/2 P e

Bellcomm

955 L'Enfant Plaza North, S.W.

date: July 2, 1971 Washington, D. C. 20024

to. Distribution B71 07001

fom: J. E. Nahra, M. P. Odle

subjectt A Dynamic Programming Computer Program
Case 105-4

ABSTRACT

The Dynamic Programming Concept for multi-stage
decision processes is illustrated via a simple example.
Based on this concept, a computer program was developed
which can, in theory, solve any multi-stage decision pro-
cess that can be put into the State Space Format. In
practice, the program is limited as to the size of the
problem it can handle.

Discrete, dynamic, optimization problems with a
‘ limited number of state variables, a large number of con-
straints, and many alternative strategies to be evaluated
subject to the constraints, are good candidates for this
program. An approach was taken in which constraints are
used to substantially reduce the well known dimensionality
problem associated with Dynamic Programming. The program
starts at a point and generates all the optimal solutions
which satisfy the specified constraints. One or more of
the optimal solutions generated can then be extracted from
the class of many optimal solutions for desired analysis
and use. A realistic space program planning application
is used to illustrate the feasibility and usefulness of
the concept as well as the computer program.

AOSUT
(NASA-CR-121350) A DYNAMIC PROGRAMMING N79-73163 -~ Z
COMPUTER PROGRAM (Bellcomm, Inc.) 78 p R
~
S
Unclas

00s61 12091

; S AN Vol A\ XU\
2 MASACRORTMXORADNUMBEM

[T
2

(CATEGORY)

Abstract
Section

Section

Section

Section

Section
Referenc

Appendix

1.0

2.0

4.4
5.0

es

TABLE OF CONTENTS

Page
Introduction=—=-—==ceecmm e o 1
Dynamic Programming--—-—-———=e-ecocmceeeeaa=- 2
Finding the Optimal Path—-=-—cememmacoo 3
Efficiency of Dynamic Programming----—- 7
The State Space Formalism--—————eee—e—ee—o_ 8
The Dynamic Programming Algorithm-——--— 12
Computer Program Description---------- 15
The PDP Element===-==-===—-c--ce-—-—-—ceo- 16
Changing the Problem Definition—--=----- 18
Problem Input and Output-=-=-—--=--=-=---—- 18
Notes on the Implementation-—==---=---- - 21
Limitations of the Program=-----=---=--- 21
Space Program Example—-——-————=—======-= 22
Brute Force Approach=———=——==—=—=—=—=——-— 23
The Space Program Ekample in State
Space Format—=-—--=--=--=—---—c-—-——-—---—- 24
Computer Program Input and Output
Illustrated-=-=——-—c=cmmcemm e 31
Discussion of Results==-=--==~=-----w=- 42
Conclusions ========--=-—---—---——————o 46

Bellcomm

. July 2, 1971 955 L'Enfant Plaza North, S.W.
cae Y e Washington, D. C. 20024

to. Distribution
B71 07001
fom J. E. Nahra, M. P. Odle

subjectt A Dynamic Programming Computer Program
Case 105-4

MEMORANDUM FOR FILE

1.0 Introduction

There are four basic elements for every decision:

Goal(s) or Objective(s)
Limitations or Constraints
Alternative Strategies, and
. Evaluating Criterion{(a)

> W N

The first element is to establish a goal or a set
of objectives to be achieved. This, perhaps, is the most
difficult part of a decision process and depends on the de-
cision maker as much as it does on the situation or problem
to be resolved. The second part is to identify the limita-
tions or constraints within which the acts of a decision
process must be carried out. This is perhaps the least sub-
jective of the four elements and depends mainly on the
problem. The third element is to enumerate all possible
alternative strategies that satisfy the constraints and
achieve the established objective(s). For complex prob-
lems, this is usually the most tedious and time consuming
portion of the decision process and where the computer can
be a useful tool. And the last element is to establish a
criterion(a) by which the alternative strategies can be
compared and evaluated so as to choose a "best" or "optimal"
strategy.

Dynamic Programming is a well known mathematical
technique in generating optimal strategies for multi-stage
decision processes. A serious disacvantage of this method,
however, is dimensionality, that is, large amounts of in-
formation must be stored in computer memory even for problems
with relatively few dimensions (3 or 4). An approach is
used to substantially reduce the dimensionality problem.

In Section 2, a simple example is employed to
illustrate the concept of dynamic programming. The state
space formalism is also explained and the procedure for
the computer program is developed.

In Section 3, a description of the computer program
is given. The steps a programmer must perform in order to
set up his program for a particular application are specified
in detail. The limitations of the dynamic programming pack-
age are also given.

In Section 4, a complex realistic decision process
of a space program example is presented. The transformation
of a qualitative engineering problem into the state space
format, as well as the use of the program, are illustrated.
Conclusions are then given in Section 5.

2.0 Dynamic Programming¥*

Perhaps the best way to explain the dynamic program-
ming concept is through an illustrative example. Suppose you
have just moved into a new house and you want to know the best
route home from the office. You intuitively realize that you
will be driving your car thru a limited number of paved streets
connecting your office and your new home. You look at a city
map and you chart all the possible ATTRACTIVE ROUTES connecting
your office with your new home, and you record the distances
in miles as shown in Figure 2-1. You then decide you want to
take the shortest possible route.

Going Home
Figure 2-1
(not to scale)

*If the reader is familiar with the concept of Dynamic Pro-
gramming, he may skip this section.

This is then a multi-stage decision process. You know where
you are, that is at O (office) in Figure 2-1. You have

decided on your objective or goal, that is, to get to H (your
new home) in Figure 2-~1. You have established your constraints
most of which are intuitively obvious. First you must move
along the lines (the streets) connecting your office and your
house and you must always move to the right to get from your
office to home. You also have decided on your evaluating
criterion, that is, you want to choose the shortest distance
route.

The only thing that remains is to enumerate and
evaluate all the alternative paths that satisfy the con-
straints, and achieve your objective. Using the shortest
distance criterion, you can choose the optimal path and
your problem is solved!

2.1 Finding the Optimal Path

One possible way of finding the optimal path is to
simply enumerate all 20 admissible paths that connect QO with
H, compute the distance of each and choose the one with the
smallest value as your optimal solution. This is a reasonable
approach and can easily be done for this problem. For more
complex problems, however, this approach may not be feasible.
Let's see if we can reduce the number of necessary calcula-
tions you have to make.

You are at O (office) in Figure 2-1, and you want
to decide whether to go to vertex A or vertex B. These are
the only two possible (admissible) paths that you can take.
Suppose you knew the values of the shortest distance paths
from A to H and from B to H. Then it is easy for you to
decide whether to go to A or to B. You would add the value
of the shortest distance path from A to H to the distance from
O to A. Similarly, you would add the value of the shortest
distance path from B to H to the distance from O to B. You
would then compare the values of the two sums and choose the
path that yields the smaller distance. So it is clear that you
would have no trouble making the first decision and determining
the overall value of the shortest distance path from O to H if
you knew the values of the shortest distance paths from both A
and B to H. Note that it is not the optimal path, but the value
of the optimal path, that is the vital information.

Of course you don't know the values of the shortest
distance paths between A, H and B, H. If you continue the
same reasoning, however, you can easily find the shortest
distance paths from both A and B to H if you knew beforehand
the values of the best paths from C, D and E to H. You would
continue this reasoning until you need only the values of

the minimum-value paths from M and N to H in order to calcu-
late the values of the shortest distance paths from J, K and

L to H. But the shortest distances from M to H and from N

to H are easily found since there is no free choice associated
with picking an admissible path from either of these vertices
to H. For each of these vertices, the value of the best and
only admissible path is the distance between the vertex and
the terminal point H.

Let us then put these ideas into practice. You
start at H and then compute the minimum~path value associ-
ated with connecting vertex M with H which is 2; and with
connecting vertex N with H, which is 4. You would then
associate the numbers 2 and 4 with the vertices M and N
respectively. You then would go back one more stage. At
vertex J, you have no choice and must go to vertex M. You
add the number associated with vertex M which is 2 to the
distance from J to M which is 5 and you associate the number
7 with vertex J. At vertex K, you add the number associated
with N which is 4 to the distance between K and M which is
5 to obtain 9. Since 5 is less than 9, you associate the
value 5 with vertex K. For vertex L, there is only one ad-
missible path L to N and the value associated with vertex
L would then be 13. You continue this procedure until you
reach your initial position, that is vertex 0. The results
are shown in Figure 2-2 where the value of the shortest
distance path from each vertex to H is recorded.

All the required information to solve your problem
is now available. You again would start at O (office) and
ask the guestion whether to go to A or to B. This is now
easy to answer since you know the value of the shortest
distance paths from A and B to H. Because 1l plus 3 is less
than 13 plus 2 you should proceed to B. Likewise from ver-
tex B you proceed to D, G, K, M and finally H as shown in
the figure. Note that you could have avoided making a deci-
sion as to which leg to proceed along at every vertex if you
would have recorded the direction which initiates the shortest
distance path from that vertex to H when you computed its
optimal value on the backward sweep. The directions are
denoted by arrows in Figure 2-3.

Figure 2-2

Going Home
Figure 2-3

Your problem is thus solved. You start at O (your office)
and you follow the arrows, that is, O to B, B to D, D to G,
G to K, K to M and M to H. You, therefore, found the mini-
mum distance route and its value between your office and
your new home. If you look closely at Figure 2-3, you will
find that you have much more information available to you
than you have requested. You have not only solved the
problem you want to solve, that is, the shortest distance
route between O and H, but you have solved all the shortest
distance route problems starting at __X_vertex in Figure
2-3 and terminating at vertex H! You have imbedded your
31ngle problem into a class of problems and found the solu-
tion to the class of problems.

This extra information might prove quite useful

to you. To illustrate this fact, suppose one day you followed
the minimum distance path from O to B. At B, however, you
found that the street from B to D, which is along your
minimum path, is blocked because of construction and you are
forced to proceed to intersection E. You are now faced with
the problem of finding the shortest distance path from E

to H. If you had charted the minimum distance path from O

to H only, you will need to compute the shortest distance
route from E to H also. However, if you look at Figure 2-3,
you will see that you already know the answer to your problem,
that is, you follow the arrows from E to H. In fact, no
matter what intersection point you find yourself at in the
figure, you can -easily find the shortest distance path from
that point to your new home.

Of course the dynamic programming procedure could
have been reversed, that is, you have been at your new home
(H) and wanted to get to your office using the shortest dis-
tance route. Your initial point now becomes H and your
final point O. The procedure is exactly the same.

2.2 Efficiency of Dynamic Programming

To evaluate the efficiency of the Dynamic Program-
ming procedure, we can compare it with the direct enumeration
method. For the dynamic programming approach, at each of the
nine vertices where there was a real choice, two additions
and one comparison were performed and at six other vertices,
one addition was performed. For the direct evaluation approach,
20 admissible paths would have had to been enumerated, which
would have involved five additions per path, yielding 100
additions, and a comparison of 20 results.

The general formulas for the n-stage case for this
class of problems (n = 6 legs in our example) better illus-
trate the computational savings. The dynamic programming

2

algorithm involves %? + n additions, while the direct enumera-

tion generates

{n-1)n!
(%n)! (%n)!

additions. For n=20, dynamic programming requires an easily
manageable 220 additions, while enumeration would require
more than 1,000,000 additions.!

This is not really a good comparison since the
dynamic programming algorithm solves a complete class of
problems and provides much more useful information than
the enumeration technigque which only solves one problem
with given starting and ending points. For any other
starting point, the enumeration procedure must be repeated.

2.3 The State Space Formulation

In the above example we have intuitively introduced
several important concepts. These concepts can be defined
as follows: (the relationship of these concepts to the
earlier example will be made shortly)

State - A state is the set of variables whose values
describe the particular condition of the physical
process that is being modeled. It is identified
by a single number in some cases and by a set of
numbers or a vector in otners. (In the example,
the state elements are the vertices in the figure.)

Stage - A stage is the position in the sequence of
the particular decision process being considered.
It is identified by a single number.

Control - A control is the set of decision variables
that are under the control of the investigator.
It is identified by a single number in some cases
and by a set of numbers or a vector in others.
In our example, it is the direction we choose to
proceed.

State Relations - These are a set of relations that
mathematically describe the outcome of a decision.
They are usually a set of difference or differen-

tial equations. There are the same number of these

relations as there are state variables.

Cost Criterion - This is the evaluating criterion that
will determine the specific choice of control or
decision variables. It must be a scaler and is
identified by a single number.

Constraints - These are the limitations on our actions
or our choice of control variables. There are
different types of constraints as follows:

State - Restrictions on the admissible states.

Control - Restrictions on the allowable controls
or decisions.

Mixed - Restrictions on the selection of both
states and controls.

Cost Function - Limitations on the allowable costs.

All of these constraints can be expressed in terms
of equations and/or inequalities.

Using this format, a decision process begins by
first choosing the state, stage and control variable(s);
the initial value (where you are); the final state value
or stage value; the state relations; the cost criterion;
the constraints, and finally finding the optimizing se-
quence of controls or decision variables. The best way
to understand this procedure is to follow an example.

Let us see if we can put the previous example in this for-
mat.

Let X be the state variable, J the stage variable,
and U the control variable. Figure 2-3 can then be put in
the form of Figure 2-4 where a coordinate system is now in-
troduced. Note that the reverse problem is used, i.e.,
"going to the office" instead of "going home". The cost
function (criterion) can be put in table form and depends
on J, X and U. The vertices or intersections can now be
identified by the coordinates, i.e., vertex C is the same
as vertex (2,2) and likewise vertex M is (5,1). We chose

- 10 -

the stage variable J to coincide with the abcissa so that
only one state variable is needed. Note that J contains
information describing the decision position in the se-
guence as well as the location. This may not always be
possible and is done here for illustrative purposes.

Going to the Office
Figure 2-4

- 11 -

The cost function, therefore, is in the following form:

J = 06
P(J,X,U) =scalar where X = -3-+3
U= =1

For example,
P(3l-l,l) = 5
That is, when you are at intersection (3,-1) or Q in the

figure and you apply a control +1 (to go to K), this de-
cision will cost you 5 miles. Likewise,

P(5,1,-1) = 2.
The state equation in this case is simply the addition of
the present state and the control to obtain the new state,
i.e.,
X{(J+1) = X(J) + U(J)
The state constraints are the limitations on the
state variable X, i.e., X must lie within the boundaries

you have chosen. Algebraically, these can be expressed as
follows:

State Constraints

-J % X

1A

J for 0 < J < 3

J - 6

iA

X<-J+ 6 for 3 <J < 6

The control constraint is the limitation on your
possible decisions. For this example:

Control Constraint

U=1z1
Note that this choice of control forces us to stay on the
lines in the figure. There are no mixed or cost function
constraints in this example.

The starting point is specified as

Initial Conditions

J =20

X=0

The final point is specified as:

Final Conditions

J =6

X=0
The problem is then to effect the transformation (0,0) > (6,0)
with the control sequence which will satisfy the constraints

and yield the shortest distance.

2.4 The Dynamic Programming Algorithm

As was shown earlier, the dynamic programming compu-
tation process begins by calculating the value of the shortest
distance path from every feasible intersection point to the
terminal point starting at the second last stage and proceeding
backward until the initial stage is reached. With every feasi-
ble (admissible) state (intersection point), therefore, there
corresponds one value of the optimal (shortest distance) path
from that state to the terminal state. These values can be
identifed by a table which is known as the Optimal Value
Table or Function and is denoted by V(J,X), e.g.,

v(2,2) =7

as can be seen from Figure 2-4. Once the Optimal Value
Function is computed, then all the optimal paths within the
feasible region (satisfying the constraints) which terminate
at the final point can easily be found, as was demonstrated
earlier.

If the reverse problem was solved, i.e., you were
at home and wanted to find the shortest distance path to
your office; then you would start at O and proceed toward H
in calculating the optimal value function V. The optimal
values at the intersections will of course be different as
can be seen by comparing figures 2-3 and 2-4. Note that the
optimal solution in both cases is the same, as one would
expect. The class of problems solved in this case, however,
are all the feasible solutions that terminate at O. Or
looking at it in another way, all the optimal solutions
starting at O and terminating anywhere in the feasible re-
gion. This second procedure is used in the following
algorithm:

10.

11.

12.

Forward Sweep

Definitions:*

X - an n dimensional vector

U - an m dimensional vector, m < n

J - stage or time counter

P - a scalar function (or table) of X and U

V - a scalar function (or table) of X and U

Let J = 0, X(J) = xo, a specified initial vector and
vV = 0.

Search all possible permutations of U.

Test each permutation. If admissible, continue, if not
go to next permutation.

For every admissible U calculate P = P(X,U).

Test P. If admissible continue, otherwise go to the
next permutation.

For every admissible U, find all admissible X(J+1)'s
from X(J+1) = X(J) + U(J).

At J+1, X(J+1) calculate V = V[J, X(J)] + P.

Compare V with the previously stored value of V at J+1,
X(J+1), and save the smaller of the two as V[J+1,
X(J+1)]: also save the corresponding vector U.

Go to the next stage; i.e., let J = J+1.

Repeat the procedure from step 3 through 10 for each
reachable point X defined in 7.

At the final stage (J), print J, X and V(J;X) for all
reachable values of X.

The forward sweep determines the Optimal Value

Function (J,X), i.e., the optimal value table in our pre-
vious example. This table contains the optimal solutions

*See Section 2.3 for a complete definition of these quantities.

- 14 -

for the problems with the same initial point and constraints
and varying final conditions. To obtain a particular solu-
tion, the following "backward sweep" is performed:

Backward Sweep

1. At J = Jf. let X = XF a specified vector.
inal

2. Print J, X, U and V where U and V had been stored.

3. Let X X-U

It

4. Let J J-1

5. Go back to 2 and repeat until the first stage is reached.

X and U were generalized to include n and m number of vari-
ables respectively. A flow chart of this algorithm can be
found in Reference 2.

Several important characteristics of this algorithm
should be noted. The Optimal Value Function (Table) has to
be stored as it is generated and must include every feasible
state point. The number of state points increases geometrically
with the number of state variables (dimensions). For the simple
example presented earlier, there were 16 feasible state points
for one variable x; for two and three variables there would have
been 64 and 256 points respectively. If we let a denote the
number of levels each state variable is allowed to take, n the
number of state variables, and J the number of stages, then

the number of possikle state points woulAd ve-aJ. For n=10,
a=10 and J=20, which is a reasonable size problem, the number

of state points would be 2 x 1011, obviously a much larger

number than any present day computer can store. Dimensionality,
therefore, is the basic problem in dynamic programming applica-
tions. .

In observing a human being execute a decision, it
is seen that a relatively small number of reasonable alterna-
tives are considered, although a large number of possible
alternatives exist. The same concept can be used here. 1In
order to solve a fairly complex problem using dynamic pro-
gramming, the various constraints must be formulated so that
only reasonable alternatives are considered by the program.

One important characteristic of this algorithm is
the fact that computation of the optimal value function is
started at the initial state which is usually known and is
propagated forward always within the feasible region.

Another tacit assumption that was made in develop-
ing the dynamic programming algorithm is that the cost
criterion function at a particular stage depends only on
the state and control of that stage. It is not affected by
information of previous or future stages.

In the following section the computer program
implementing this algorithm is described. In Section 4
a realistic application is presented illustrating the

use of the program and demonstrating the feasibility of
this approach.

3.0 Computer Program Lescription

A computer program, GPALG, has been written which
implements the previously described algorithm. The imple-
mentation provides a capability for the user to particularize
the program to his problem. The user provides the constraints
and functions which define his problem via FORTRAN statments
in a PDP element. Upon compilation, skeletal subprograms on
the Fastrand file are expanded to include the FORTRAN state-
ments in the PDP element. After defining the class of problem
using the PDP element, the program accepts inputs for a specific
execution via two NAMELISTS. In general, the user must do the
following steps to run the program:

1. Assign his own Fastrand program file (previously
catalogued) .

@ASG,AX USER*USERFILE.

2. Copy the symbolics and relocatables of the program
from file GPDALG*GPDFIL.

@COPY, SR GPDALG*GPDFIL. ,USER*USERFILE.
3. Enter his own problem definition via a PDP element.

@PDP,FLIX USER*USERFILE.ELEM, .ELEM

4. Recompile onto his file the symbolic elements with
names NEXTST, COST, COSLIM, COMCOS, CONSTR, FINVEC.
Ex:
@FOR, S USER*USERFILE.COST, .COST

5. Pack and prep his file:
@PACK USER*USERFILE.
@PREP USER*USERFILE.

6. Map to create an absolute element for execution.

@MAP, IS USER*USERMAP, . USERMAP
LIB USER*USERFILE.
IN USER*USERFILE.GPALG

The above steps serve to transfer the general program to the
user and define his specific application. If the problem
definition, as specified by the PDP element, is satisfactory,
these operations are done only once and the program is now
ready for execution. Input for program execution must also
be provided and is described in the section "Problem Input".
A complete listing of the program is given in the Appendix,
and is available on Fastrand File GPDALG*GPDFIL.

3.1 The PDP Element

' For initial problem definition, a PDP element (see
subsection 4.3 for example) with various entry points must be
provided by the: user.3 Between each entry point name and its
corresponding END, the user must provide FORTRAN statements
which either define a function (like the "next state" function)
or define and test constraints (like the "state" constraints).
The specific FORTRAN statements provided depend on the function
of that entry point. Table 3-1 shows entry point names,
function and FORTRAN variables to the user in his FORTRAN
statements.

Name

NEWST

COSTF

TCOST

VCONST

SCONST

CCONST

BCONST

COSTCN

FINCNS

Function Variables Available

next state function cs,CcpP,ST,NX,NC,JTIME,XIN

penalty or cost func-
tion ¢s,Cp,NX,CC,JTIME,XIN,P

total cost or value
function ¢s,cp,st,p,v,VV,JTIME,XIN

total cost constraints CS,CpP,ST,P,V,VV,JTIME,XIN

state constraints Cs,CP,NX,NC,JTIME,XIN
control constraints CS,CP,NX,NC,JTIME, XIN
mixed (state & con-
trol constraints) Ccs,CpP,NX,NC,JTIME,XIN
penalty constraints P
final constraints CS,JTIME,NX,XIN

Tanle 3-1

Table 3-2 defines the variables shown on the right in
Table 3-1.

Name Type Definition

CS Int (Integer) current state vector

CP Int current control vector

NX Int number of elements in CS,XIN,
and ST

NC Int number of elements in CP

ST Int new state vector (generated by
CS and CP)

P Real penalty cost function

\ Real Current accumulated optimal

value function

vV Real total accumulated optimal value

function including going from
CS to ST (VV=V+P)

JTIME Int current time or stage
XIN Int initial state vector
Table 3-2

Referring to Table 3-1

In entry point NEWST the next state vector compu-
ted must be placed in variable ST.

In entry point COSTF,

be placed in variable P.

the penalty or cost should

In entry point TCOST, the total accumulated cost
should be placed in variable VV.

For entry points VCONST-FINCNS where constraints
are being tested, the FORTRAN IF statements must have a GO

TO 1000 if a constraint is not satisfied.

3.2 Changing the Problem Definition

If after the problem is defined, the user wishes
to modify that definition by changing one or more FORTRAN
some subroutines will need
to be recompiled. Table 3-3 shows which subroutine is re-
compiled if statement(s) in an entry point are changed:

statements in the PDP element,

ENTRY

_POINT SUBROUTINE

NEWST NEXTST

COSTF COST

COSTCN COSLIM

TCOST or VCONST COMCOS

SCONST

CONST, or

BCONST CONSTR

FINCNS FINVEC
Table 3-3

Each time that a recompilation is done, the EXEC 8
FurPur operations of PACK, PREP and MAP must also be done
SO as to create a new absolute element of the program for

execution (see Section 3.0).

When the user is satisfied with the problem defi-

nition, the program is ready to be executed.

3.3 Problem Input and Output

For a specific running of the program, input and

output are controlled via two FORTRAN namelists

(CONDAT

and PRTDAT). Most of the variables in namelist CONDAT are

for problem definition. Variable IgUT controls program
termination and output. The result of execution of the
program is an array of feasible states and the associated
accumulated cost of agettina from the initial state to

those states. The user may specify one of two types of ter-
minal conditions. The first is to specify a final stage num-
ber so that the programs runs through n stages where n is the
difference between the final and initial number of stages plus
one. The second is to specify a final set of constraints. 1In
this case the program will move from stage to stage until the
final constraints are satisfied. The feasible state vectors
occurring at this final stage are then the output of the pro-
gram and all feasible states at every stage are stored on a
file if the user desires. Associated with each feasible final
state is a state number which is used for identifying the
final state for which the backward problem is to be worked.

By backchaining (backward sweep) is meant the process of track-
ing from a specific final state to the initial state. The
path provided by the program is optimal (least cost). The
-feasible final states to be used in backchaining are specified
in namelist PRTDAT.

~

1. NAMELIST/CONDAT/
Name Type/array Size Definition
JIN Int initial stage
XIN Int/20 initial state vector
VINIT Real initial cost
NX Int # of components in

state vector (;20)

NCONTR Int # of components in
control vector (g20).

U Int/20x11 U(i,1l)=# of values of
the control's ith com-
ponent. U(i,j+1l)=jth
value that the ith com-
ponent assumes.

MAXJ Int last stage if stage
used as limit

ID Alphabetic 6 character problem
identifier

Name Type/array Size
I0oUT Int

NAMELIST/PRTDAT/

(used when IOUT = 2, 4 or 5)
ID Alphabetic
XFIN Int/1000
NFIN Int

21 -

Definition

controls termination
of problem

= 1 MAXJ specified
and results stored
on unit 10. Pro-
gram terminates.

= 2 Same as 1 except
namelist PRTDAT re-
guested for back-
chaining before
termination

= 3 Final constraints
specified and results
stored on unit 10.
Program terminates

= 4 Same as 3 except
namelist PRTDAT re-
quested for backchain-
ing before termination

= 5 Results from previous
execution exist on file 10.
Request PRTDAT for backchaining

6 character problem
identifier

Vector of state numbers
the user would like to
see backchained (these
numbers are given as
previous output)

Length of XFIN vector
(21000)

If in NAMELIST/CONDAT/, IOUT=5 is specified, all computation
is bypassed and only backchaining is done. The user must
have, therefore, previously run the program with IOUT#5 and
catalogued a FASTRAND file on which the results were to be

saved. When the user wishes to save results for later use,
he must have the following control cards:

@ASG,A USER*USERDATA.
@USE 10,USER*USERDATA.

and again specify that data file as unit 10 when backchaining
is done.

3.4 Notes on the Implementation

The algorithm is most useful when the number of
feasible states between the initial stage and final stage is
large. For many problems this number may be as large as 10
to 15 thousand. Because it is not possible to keep in main
core memory all the feasible states generated for a problem
of this size, a paging scheme for keeping feasible states on
a mass storage device was implemented. The paging scheme is
such that each feasible state is accessed by reference to
its page number and relative position within the page. This
scheme was possible because the algorithm only requires
direct access to states at stage n for computation of states
at stage n+l. The feasible states at stage 0,...,n-1 can
thus be stored externally until they are needed for back-
chaining. The subroutine PROFILE in the Appendix implements
this paging scheme. Another technique to alleviate the core
storage problem was a compact representation of the state
and control vectors reducing the number of memory words
needed for these vectors by a factor of 4.

3.5 Limitations of the Program

The state and control vectors are limited to 20
components each. Each component of the control vector may
take on at most 10 values. The number of final states to
be backchained (in namelist PRTDAT) is limited to 1000.

The most important limitation of the program involves the
number of feasible states generated at any given stage.
Because all feasible states at a stage n are necessary to
generate feasible states at stage n+l, both stages must be
able to fit into main memory simultaneously. The limiting
size on the number of feasible states at time n and n+l

is 2500. If while generating feasible states at stage n+l
(from states at stage n) the sum is greater than 2500, the
program will terminate. Since the number of feasible states
generated depends on the problem constraints, tightening the
constraints may allow the problem to be completed if this
maximum is exceeded.

4.0 Space Program Example

In developing a space program plan, a critical
problem is usually scheduling the development of major
program segments in the best way possible within cost and
other constraints. Suppose several space program plans
call for the continuation, initiation, and completion of
$ix major program segments. These might be Apollo, Sky-
lab I, Skylab II, Skylab III, Earth to Orbit Shuttle
(shuttle), and Intermediate Launch Vehicle (ILV). Immedi-
ately, several important questions arise concerning this
plan. First is it feasible within the time and cost
constraints? If it is, what is the best schedule?

A typical set of cost data for each of these
program segments is presented in Table 4-1. The time in-
tervals are in years and represent the stage of normal
development or continuation for a particular program
segment. The costs are in millions of dollars. The arrow
identifies a key level in the program which might denote
the first launch.

YEARS — | 1 2 3 4 5 6 vi 8
SEGMENT
r
1 APOLLO 653 | 287 85
1
2 SKYLAB | 372 | 474 | 201 6
v
3 SKYLAB |l 37 80 | 218 | 353 | 588 a9
] Y
4 SKYLAB I 45 | 135 | 225 | 300 | 130
\ 4
5 SHUTTLE 49 | 200 | 550 | 600 | 450 | 450 | 200
¥
6 ILV 19 57 | 105 | 192 | 230 | 230
FIXED COSTS | 363 | 415 | 386 | 354 | 347 | 349 | 350 | 350

Table 4-1

- 24 -

The following is a typical set of qualitative
constraints on the program plan:

l. Yearly expenditures must not exceed $1.525 billion
the first five years and $2 billion thereafter.

2. Yearly expenditures must not be less than $1.0
billion for the first three years.

3. Maximum time allowed for the plan is ten years.
4. Apollo has first priority and must be continued.

5. Skylabs must follow in order and it is desirable
to have them at least one year apart.

6. It is desirable to have the ILV (Intermediate
Launch Vehicle) at the same time or before
the Shuttle.

7. It is desirable to have the first shuttle launch
by 1978.

8. It is also desirable to assure a program's progress
once initiated.

4.1 Brute Force Approach

This problem can be posed as a decision process.
The goal is to complete the specified program segments.
The constraints are listed above. The evaluating criterion
is to minimize overall cost; and the alternative strategies
are quite numerous. If there were only the time constraint,
and assuming the first program segment (Apollo) is essen-

tially fixed, then one can show that more than 8 x 107 com-
binations of segments that would yield a completed program
in 10 years are possible. One can then compute the cost

for each of these programs, and choose the one that yields
the smallest value. This is of course beyond the capability
of a human being.

A more reasonable approach would be to take ad-
vantage of the constraints and eliminate many of the possi-
bilities. Since the first segment (Apollo) is essentially
fixed, we see from the cost table that the expenditures for
the first year for Apollo and fixed costs, is approximately
1.0 billion dollars. We have then approximately 1/2 billion
dollars to initiate new programs and stay within the expendi-
ture constraint. From Constraint 7, we notice that the
shuttle has to reach level 5 by 1978. We also notice that

the Skylabs must be initiated in order and at least one
year apart. Also that the ILV development must precede
or correspond with shuttle development. We must be
careful not to start too many programs because their peak
expenditures might occur at the same time and the yearly
expenditure constraint might be violated at a later year.
And to complicate the situation even further, the lower
bound on yearly expenditures, that is, 1.0 billion
dollars might be violated. An experienced person would
probably be able to formulate a feasible program, that
satisfies the constraints, within a reasonable time.
However, there is no assurance that the program he form-
ulated is the best one possible in the sense of overall
minimum cost!

4.2 The Space Program Example in State Space Format

Following the procedure outlined in Subsection 2.3,
‘we can now formulate the space program example in state
space format.

State Variables - The space program segments constitute
the physical system under consideration, therefore, define
six state variables corresponding to the six program segments,
i.e.,

Xl = Apollo

X2 = Skylab I
X, = Skylab II
X, = Skylab III
Xg = Shuttle
X6 = ILV

The numerical values or the levels of these variables describe
the state of the system.

Stage Variable - Time describes the position in the se-
quence of the decision process in this example. We, therefore,
define the stage variable as time, i.e.,

J = t (years)

Any other time period can of course be used.

- 26 -

Control Variables - These are the variables under our
control which affect the state of the system. 1In this
case these are decisions on the development of the various
program segments. Each program segment has a corresponding i
decision variable. Let us denote these as follows: |

Ul - Development decisions on Apollo (Xl) i

U, - Development decisions on Skylab I (xz)

U3 - Development decisions on Skylab II (X3)

U4 - Development decisions on Skylab III (X4)

U5 - Development decisions on Shuttle (XS)

U6 ~ Development decisions on ILV (X6)

These variables may take on values of 0, 1 and 2
where 0 would denote no development or a delay in a program
segment, 1 would denote normal development in the segment,
and 2 would denote accelerated development in the program
segment so that two years of normal program development
can be accomplished in one year of actual time. Of course,
more levels can be used if desired.

State Equations - The state equations mathematically
describe the outcomes of decisions at every stage in the
process. In this case, these are very simple linear differ-
ence equations as follows:

X, (J+1) = X, (J) + U, (J)
X2(J+l) = XZ(J) + U2(J)
X3 (J+1) = X3(J) + U5(J)
X4(J+1) = X4(J) + U4(J)
x5(J+1) = XS(J) + US(J)
X6(J+l) = X6(J) + U6(J)
The level of each of the state variables is changed by adding

to it the value of its corresponding control (decision) vari-
able which may be 0, 1 or 2.

Cost Function - The cost function (table) gives the
cost incurred as a result of the particular state of the
system and the particular decisions (control) taken. 1In
this case, the cost is the development cost presented in
Table 4-1. This table was modified to account for acceler-
ating or delaying a particular program segment. Factors
of 0.75 and 1.25 were used for delaying and accelerating
a program respectively. If a program is delayed, the cost
of keeping it at its current level would be 0.75 of the
yearly expenditures at that level. If a program is
accelerated, i.e., two years of development in one calendar
year, the normal cost for the two years is increased by 25%.
For example, the normal development for Skylab III the first
2 years would cost 45 and 135 million dollars respectively.
To accomplish both years development level in one year
would cost 1.25 times (45 + 135) or 225 million dollars, as
shown in Table 4-2 where the cost data is presented.

Xl which denotes the Apollo segment is initiated

at level 10. This signifies that the segment is in its 10th
year of development. The arrow points to the key level in
a program segment as before. Fixed costs are denoted by VO

in the last row. Note that the cost penalty depends on the
state, the stage, and the control. Once a program reaches
its maximum level (completed), its corresponding control
and cost are set to zero and infinity respectively.

Constraints - As before, the constraints can be grouped
into four different categories: state, control, mixed and
cost constraints. The gqualitative constraints enumerated
earlier can be put in equation or inequality form as follows:

State Constraints: Table 4-3 numerically describe
some of the qualitative constraints mentioned earlier.

28

SEGMENT
X4
APOLLO 10 1 12 13
U,
0 500 490 215
653 287 85 -
X,
SKYLAB | 0 1 2 3 4
U,
0 0 280 355 150
372 474 201 6 o
2 1060 845 254 = -
X3
SKYLAB 11 0 1 2 3 4 5 6
Uz
0 0 28 60 164 265 440 37
37 80 218 353 588 49 w
2 146 373 715 1180 800 - -
Xa
SKYLAB 111 0 1 2 3 4 5
Uy
0 0 34 100 169 225 98
45 135 225 300 130 20
2 225 450 655 537 o o
Xg
ORBIT SHUTTLE |, 0 1 2 3 4 5 6 7
5
0 0 37 150 212 450 338 338 150
1 49 200 550 600 450 450 200 -
2 31 936 1440 1310 1125 937 - -
Xg
INT. LAUNCH VEH. 0 1 2 3 4 5 6
LV Ug
0 0 14 43 78 144 172 172
19 57 105 192 230 230 -
2 95 202 370 527 575 - -
FIXED COST Vo 363 415 386 354 347 349 350 — CONSTANT
Table 4~2

Cost Function

In Millions of Dollars

a=.75,

B=1.25

ACCEPTA EY DATES MINIMUM
KEY & NCEKEVDATES “FiNAL

SEGMENT LEVEL MINIMUM MAXIMUM STATUS

APOLLO 1 13 1973 1973 13

SKYLAB | 2 2 1973 1974 4

SKYLAB I 3 4 1974 1976 6

SKYLAB (1| 4 4 1976 1979 5

SHUTTLE 5 5 1976 1978 7

ILv 6 5 1976 1978 6
Table 4-3

Numerical Formulation of Qualitative State Constraints

where the key level again denotes the first launch date.
Acceptance key dates are the key dates within which the key
level must be achieved, and the minimum final status is the
minimum level acceptable at the end of the designated time
interval. For example, in Table 4-3, Skylab I which is seg-
ment 2 has a key level of three which means its first launch
will occur after three years of normal development. This
key level must occur either in 1973 or in 1974; and at the
end of the program, the fourth year of development must be
completed.

The limits on the state variables and the gualita-
tive constraints can be translated into the following
inequalities:

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

lOEXl

0<X
0<X

0<X

0§X5

0§X6

X >6
X,23

X,>4

<13

<4

<4

<5

<7

<6

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

for

J<3
J34
J=10

J<4

J=10
J<6
J>9
J=10

J<6

- 30 -

The problem is then to find the control sequence that will
transform the state of the system from fts initial condi-
tions to the desired final conditions satisfying the con-
straints and minimizing the overall cost of the program.
The next subsection will describe the input to the dynamic
programming computer algorithm and the resulting output.

4.3 Computer Program Input and Output Illustrated

Preparatory Input

The following operations prepare the program for
execution. The statements in the PDP element define the
constraints and functions for the space program problem.

@ASG,AX GPDALG*STSPP.
@ASG,A GPDALG*GPDFIL.
@COPY, SR GPDALG*GPDFIL. ,GPDALG*STSPP.
@PDP,FLIX GPDALG*STSPP.DECS, .DECS
@FOR, S GPDALG*STSPP.COST
@FOR, S GPDALG*STSPP.COSLIM
@FOR, S GPDALG*STSPP.COMCOS
@FOR, S GPDALG*STSPP.CONSTR
@FOR, S GPDALG*STSPP.FINVEC
@PACK GPDALG*STSPP.
@PREP GPDALG*STSPP.
@MAR, IS GPDALG*STSP.MAP.,MAP
LIB GPDALG*STSPP.
IN GPDALG*STSPP.GPALG

The Pastrand file GPDALG*STSPP now has an absolute element
on it which is ready for execution.

@PDP,FLIX

FLIENS
thD

NEwS1

1y
EnND
COSIF

1y

END
COSTCN

END
TCOST

END
VCONST

- 33 -

GPDALG*STSPP.DECS, .DECS

PROC
IF (CS(3) «NE. 6 «+OR. CS(5) oNE., 7) 6O TO 1000

PROC

DO 10 I=1.NX
ST(I)=CS(I)+CP(I)
CONTINUE

PROC

NIMENSION V0O(10)

NIMENSION COSTAB(6r8¢3)

DATA (VOU(I1)sI=1010) /3630415403866 92354493U7,9349,91350¢¢

3504935040350,/

DATA ((COSTAB(leleJd)eIZ194)9sJ=1+3)/

S0U¢ 1490921561 0,26534902874¢¢85¢0100000¢70¢70e¢0,¢0./

NATA ({(COSTAB (2¢1,U)e1I=105)sJ=1+3)/

0e228049355,0150,04,¢

3720'474.'2010'6.'1000000'

1060+9r8454925449100000.+100000./

DATA ((COSTAB(3r1eJd)eI=1e7)0eJd=1+3)/

0.'280'60"16“0'265.'4“00'3700
3761800021869 353,¢588404949100000.¢

1“60'373.'7150'1180.!8000'100000.'100000./

DATA ((COSTAB(4eIrJ)eI=1+6)J=1,3)/

0e?340110049169¢92254¢984¢

45¢69135,1225¢130047130.9100000.

22524506 065549537¢,100000.0100000,/

DATA ((COSTAB(SrTI¢J)eI=1¢8)rJ=103)/

De?t37¢2150,¢+U412¢9+450,9338493384¢150,¢

490'200.05500'6000'450.’“50.'2000'1000000'

311419366 91440.0131049112509937.,92100000.¢100000,7/

PDATA ((COSTAB(6rIrnJ)r»I=197)9Jd=1,3)/

Oc'140'“30'78.'1440.1720'1720'

190'57"105.'1920'2300'2300’1000000'

95¢0202,0370¢2527¢¢575.9100000.,¢100000./

cosST=0,.

DO 10 JI=1,NX

K=CP(I)+1

KK=CS(I)=XIN(I)+1

COST=COST+COSTAB(IrkKK'K)

CONTINUE

COST=COST+VO(JTIME+])

PROC

IF (P +GTs 1525+ +ANDe JTIME LLT. 5) GO TO 1000
IF (P +«6T. 2000,) O TO 1000

IF (P o+LTe 1000¢ oAND. JTIME JLT. 3) GO 70 1000

PROC
VVEV+P

PROC

END
SCONST

END
CCONST

ENO
BCONST

1v

END

PROC

NS

IF (CS(1)
NN=2

IF (CS(g)
Hh=3

IF (CS(3)
uN=4

IF (CS(y4)
NN=5

IF (CS(5)
MME6

IF (CS(6)
HINET

IF (JTIME
NZ=8

IF (JTIME
NN=G

IF (JTIME
=10

IF (JTIME
HN=11

IF (JTIME
tNZ12

IF (JTIME
NN=13

IF (JTIME
NN=14

IF (JTIME
NN=15

IF (JTIME
fIN=16

IF (JTIME
GO0 TO 1000
NN=17

IF (JTIME
60 TO 1000
NN=18

IF (JTIME
60 TO 1000
NN=19

IF (CS(5)
NN=20

IF (CS(3)
NN=21

IF (CS(4)

oL T.
LT
oLTe
oLTe
oLTe
oLTe
oLE.
eGTe
+EG.
oLEe
eGE
«EQe
oLE.
oGE.
«EQe

«LEe
eGE o
«EQe

+EQo
eEQe
+EQ.
PROC

PROC

NN=24
J0 10 I=2sNX
IF (CS(I) 6T
.LT. 5)

CONTINUE
NN=25 :
IF (CS(}1)

10

]

0
3
3
190
n
6
10
6
9
10
6

8

10

5
4

4

XIN(Y)
GO TO 1000

oL Te 13

- 34 -

.ORO CS(].) OGTQ

.ORQ CS(2) oGTo

OORO CS(S) .GT.

.OR. CS(“) .GTC

.OR. CS(E)) oGTo

*OR. CS(6) +GT.

oAnDe CS(2) oGTo

OANDc CS(2) JLT.

e ANDo CS(2) L7,

.ANDQ CS(3) +GTe

‘ANDO CS(3) LT

o+ AND. CS(3) .LT.

+ArDe CS(4) LGTo

«AND CS(4) LLT.

eANDe CS(4) LT,

+AND (CS(5) 6T,

oANDn {CS(S) LT,

'ANDO (CS(S) oLTo

oANDo CS(6) JLT.

eAtiDe CS(2) LT,

.ANDI CS(3) +LT.

+AND. CP(I)

«ANDe CP(1) .NE,

L

13) GO 70 1000
4) GO TO 1000
6) GO To 1000
5) GO TO 1000
7) GO 70 1000
6) GO TO 1000
3) GO TO 1000
3) 60 TO 1000
4) GO0 TO 1000
4) 60 TO 1000
4) 60 TO 1000
6) GO TO 1000
4) 60 TO 1000
4) GO TO 1000
5) GO TO 1000
5 +O0R. CS(6) .GT.
S +O0Rs CS(6) LT
6 +OR., CS(6) LT,
5) 60 TO 1000
3) GO TO 1000
4) 60 TO 1000
oLEs O +AND. JTIME
1) GO ToO 1000

5)

5)

6)

)

)

)

Problem Input

1. The following sequence of statements will cause
the program to be executed and the results stored on a
Fastrand file GPDALG*STDAT. Notice that program termina-
tion is governed by the stage (IQOUT=1).

@ASG,A GPDALG*STSPP,
@ASG,A GPDALG*SPDAT,
@USE 10,GPDALG*STDAT.
@XQT GPDALG*STSPP.MAP
SCONDAT

JIN=0, NCONTR=6, NX=6, MAXJ=10, VINIT=0., IOUT=1
ID='NTEST' ’ XIN=10,0'0'010,0'0'
u(i,1)=2,3,3,3,3,3, u(1,2)=0,0,0,0,0,0,
U(l,3)=l’l’l,l’l'l, U(l,4)=0,2’2’2,2’2,
SEND
The output of the program is a list of state numbers, costs,
and the feasible states occurring in the final stage of the
program, as illustrated in Table 4-4.
Now if the user desires to see the optimal path
taken from the initial state to one or more of the final

states (say state number 930 in Table 4-4). The following
sequence of statements results in the desired backchaining:

@ASG,A GPDALG*GPDFIL.
@ASG,A GPDALG*SPDAT.
@QUSE 10,GPDALG*SPDAT
@XQT GPDALG*GPDFIL.MAP
$CONDAT

IOUT=5,

$END

36

TABLE 4-4

Feasible Final States for 10 Year Program

v o W NN n v v v v v

wown W onm N N Wwn

'2]

LY SNOTLIJINOD WNI4 L34 HOTHM

0

9

T N o~ o~ M~ M~ DN v

&

n nWw

'3

3

=+ 2] o F 0 O

F O F O O

T N 0w ¥ 0

']

X

T
eT
T
€T
€1
£t
58 4
eT
1
€T
" ¢
T
T
e1
€T
£1

01

000 23pTT
c0n*5250T
nNAe*GLITT
con*?GeTY
0No°c0ntI
000°CHTT
000°0LCTY
000°CLAOT
000°*€9GTT
000°0H21TT
000°62HTT
000°8TLTIY
000°662TT
000°98G1T
000°LG0TY
000°LHLTT
a0n*H2H1T
000°L2601
000°LT9TT
000°h621T
n00°*ShH60T
000°GE9TT
non*2IeTT
0Nn°GI01
Q00°*S0STT
0gn*2811T
LSNI

=z ATL

1STIN AYH99Hd »04 A3NIA¥3L3I0 SUOLDIA VLS WNTH JHL 3Ny aNT407704 341

G7s
hes
£26
226
126
026
616
816
LT6
916
ST6
hi6
£16
c16
116
015
606
806
L05
906
G606
H05
€06
206
106
0nG

NI

37

(Con't)

Table 4-4

O

~ o~

0O O M~ ~ ~ ~

£1
€T
€1
€1
1 4
€T
er
eT
c1
€T

NON*696TT
N00*AH9TT
000°66027
0o0n°*THOCT
000°TT6TT
000 L8HTT
NON*9.LLTY
00N LGETT
000°GTTITT

000°*G08T1Y

Ge6
hes
ceb
AN
1¢6

o6

SPRTDAT
NFIN=1, XFIN=930
SEND

The output is again the feasible states presented in Table
4-4 and the particular optimal solution connecting the
initial state with the specified final state. This solu-
tion is presented in Table 4-5.

The same problem is worked again with IOUT=3 which
means that a constraint governs termination of the program.
This first sequence of statements causes results to go on
file 10.

@ASG,A GPDALG*GPDFIL.
@ASG,A GPDALG*SPDAT.
@QUSE 10,GPDALG*SPDAT.
@XQT GPDALG*GPDFIL.MAP
$CONDAT

JIN=0, NCONTR=6, MAXJ=10, VINIT=0, IOUT=3,
ID='NTEST', XIN=10,0,0,0,0,0,
uv(,1)=2,3,3,3,3,3, uv(1,2)=0,0,0,0,0,0,
u(,3)=1,1,1,1,1,1, U(l1,4)=2,2,2,2,2,2,
SEND

The output is again a list of final feasible states that

satisfy the terminal constraints.This output is given in

- 39 -

Table 4-5

Optimal Solution for 10 Year Space Program

BEGIN pACKCHAIN AT TIME = 19 wITH SELECTED FINAL VECTOK
IIvE CouT X1 X2 X3 X4 X5 X6
10U 114é/7.0 STATE 13 4 6 5 7 6
CONTROL 0 0 0 1 1 0
9 1UbY%4.0 STATE 13 4 6 4 6 6
CONTROL 0 0 U 1 1 1
8 Yed3.U0 STATL 13 4 6 3 5 5
CUNTROL 0 0 0 1 1 1

7 7Y9¢7.0 STATE 13 4 6 2 4 4

CUNTROL U 0 1 1 1 1
6 ©597.U OSTATE 13 4 5 1 3 3
CONTROL 0 0 1 1 1 1

5 4956.0 STATE 13 4 4 0 2 2
CONTROL 0 1 1 0 1 1
4 3993.,0 STATE 13 3 3 0 1 1
CONTROL 0 1 1 0 1 1
3 3i%2.0 STATE 18 2 2 0 0 0
CONTROUL 1 1 1 0 0 0
2 2127.0 STATE 12 1 1 0 0 0
CONTROL 1 1 1 0 0 0
1 1016.0 STATE 11 0 0 0 0 0
CONTROL 1 U 0 0 0 0]

U «0 STATE 10 0 0 0 0 0

LS

1Y SNOTLIANOD VYNT4 13W HITHM LSIUIN WYNOONd HO4 OINIWNILIQ S¥0LI3IA 3LVLIS IYNIJ 3IHL 3Iyv

wexbord SWT] WNWTIUTW IO So93e3S [BUTIJ oTqlsesad

9-v 919eL

¢t
cl
el
¢!
el
¢!
cl
el
tl
el
¢!

c!

000°¢c8L0t
gooccgs9atl
000°es€ol
0o0+*sZigt
000*€é66

0D0%8hé6é

000¢sZL01
000°sss01
000°*ss6201
ooo*0Z001
000°*°S€66

0c0°*0686

1802

a Wl

SNIMO0TII04 3HYL

Ghot
6€9t
gEel
L€91
9€91
st
hEol
tE91
rAN A
1€91
ge9l

6291

INIT

NId &

- 41 -

Now the user wishes backchaining for a specific state, number

1640, in Table 4-6.

will cause the backchaining:

@ASG,A

@ASG,A

@USE

@XQT

SCONDAT
IOUT=5

SEND

$PRTDAT
ID='NTEST'

$END

$RRTDAT
XFIN=1640, NFIN=1,

SEND

The following sequence of statements

GPDALG*STSPP.
GPDALG*STDAT.
10,GPDALG*STDAT.

GPDALG*GPDFIL,.MAP

The output from execution again points out all the feasible
final states given in Table 4-6 and the optimal solution
from the initial to the specified final state presented in

Table 4-7.

- 42 -

Table 4-7

Optimal Solution for Minimum Time Space Program

BeGIN BACKCHAIN AT TIME = 8 wWITH SELECTED FINAL VECTCR
I TME COST X1 x2 X3 X4 X5 X6
d lu/E3.0 STATE 13 4 6 5 7 o
CONTROL U 0 1 1 2 1
7 9083.0 STATE 13 4 5 4 5 5
CONTROL 0 0 1 1 1 1
6 7101.0 STATE 13 4 4 3 4 4
CONTROL 0 0 1 1 1 _1

5 5438.0 STATE 13 4 3 2 3 3

CONTROL 0 1 1 1 1 1
4 4U77.0 STATE 13 3 2 1 2 2
CONTROL o 1 1 1 1 1
3 3140.0 STATE 13 2 1 0 1 1

CUNTROL 1

[
[y
o
[
-

2 2090.U STATE 12 1

c
o
Q
o

CONTROL 1 i 0
1 1016.0 STATE 11 0 0 0 0 0
CONTROL o SRS GE ¢ R | S MR 1) 0

v «0 STATE 10 0 0 0- 0 0

P FIN

4.4 Discussion of Results

As was illustrated in the previous section, using
the program is relatively easy once the problem is formu-
lated in state space format. At the beginning of this
section, two questions were posed: Whether a feasible solu-
tion exists, and if it does, what is the best solution?

To answer the first question, the time constraint
of ten years was imposed and used as a terminating condition
in the program. The program then generated all the optimal
feasible states that are reachable at this stage. This data
is presented in Table 4-4. ©Note that the desired final
state (13, 4, 6, 5, 7, 6) is included in this set as state
number 930. As in the "going home" example, more informa-
tion than that requested is provided here. Again, this
information might be very useful to the decision maker. 1If
for example, at a later date it was discovered that the
funding levels were lower than expected and the desired pro-
gram cannot be completed, then an alternate, less ambitious
program must be formulated. The investigator can then look
at Table 4-4 and determine if any of the available final
states meet his new cost constraint. If he finds one and
is satisfied with the final status of the program, he can
easily find the optimal schedule of that program by back-
chaining with that particular final state. The overall
program need not be run. One can think of many ways to
use this feature of dynamic programming.

The desired final state (13, 4, 6, 5, 7, 6) is
used for backchaining. The output is given in Table 4-5.
This optimal schedule is more clearly illustrated in Table
4-8. Note that the yearly expenditures satisfy both the
lower and upper bounds. The lower bound of $1 billion
was dropped after the first three years and the upper bound
was increased to $2 billion after the fifth year. This
illustrates the flexibility of the program and almost any
type of constraint can be used.

The same problem was run again, except this time
the desired final state was used as a stopping condition
and time or the number of stages was left free. To our
surprise, the desired final state was reached within only
eight years and with smaller overall cost! The program out-
putted the feasible states at this stage as can be seen in
Table 4-6. As in the previous case, this output can be

*y

useful to the investigator in evaluating his alternatives.
The desired final state was then used for backchaining
resulting in the output presented in Table 4-7. This op-
timal schedule is better illustrated in Table 4-9. Notice
that the Shuttle development was accelerated in the last
year. Again observe that all the constraints were satis-

fied. One can show that this is a minimum time schedule
as well.

On comparing the two schedules, it is apparent
that although the yearly expenditures for the minimum time
schedule are higher, the fixed costs for the last two years
are eliminated. This, then explains the corresponding
lower cost.

This example was used only for illustrative pur-
poses and to demonstrate the feasibility, flexibility and
usefulness of the computer program. Many important factors
were not considered. The costs of the various program
segments, for example, are not independent and depend very
much on the schedule itself. The costs used were in con-
stant dollars while in fact dollar values change drastically
in a time period of ten years. Some of these and other
factors can be included in the program to give a more
realistic simulation.

It is conceivable that for a class of problems,
such as space program planning, an interface computer pro-
gram can be built between the user and the basic dynamic
programming package. In this interface program all the
inputs to the basic program will be fixed except for a
relatively small number of physically meaningful parameters
which are left to be specified by the user. Such a program
can then be used on an online terminal.

|
uwn
<

L8y 11

€68°0

08

juswdoToa9@ TPWION JO IeSX T =V

$6G°0T €22°6 LZ6°L L6S°9 9G6°F €66°t <CST'E
TLE'T 96Z°T O0€€°T 1T¥9°T €96°0 T¥P8°0 SCTO°T
\ v % v v v
v v v v v \Y
v v v v
v v v v v
v v v
v
6L 8L LL 9L SL VL €L

(wexboxg Iedx QT I0d)

s1npoyos zuswdoisasg TewT3ldo

8- °TdedL

LZT"C

TITT°T

L

9T0°T

9T0°T

TL

3s0D Te30%

(suoTTITg UI)
saanj Tpuadxdg ATIesjx

ATI
2133nys
ITTI get1&s
II qeT&s
I geT4&ys

or1od¥

Iesx uUL2IIND

46

s

jusudoTaa2Q TPWION JO I€3X T = V

€8L°0T €80°6 T9T°L B8EV'S LLO'P OPTI°€ 060°C 9T0°T 3s0D Te3oL
00L°T 2Z6°T €29°T T9€°T LE6°0 0SO°T ¥LO'T 9TI0°T aanjtpuadxg ArIesx

v v v v v v ATI

LAY v v \Y v \% 21330Ys

Y v v v v IIT qeT&s

v v v v v v I1 qetéiys

v v v v I qeT&ys

v v v ortody

6L 8L LL 9L GL VL €L zL 1L Ie8x judaxand

(3IUTRI3SUOD SWTL ON)
anpayoss uswdoraasg TewTado

6-7 °IGEL

5.0 Summarz

The Dynamic Programming Concept for multi-stage
decision processes was explained via a very simple example.
The type of problems for which this approach is useful were
put in a general format known as the State Space Format.
The problem of dimensionality associated with Dynamic Pro-
gramming was substantially reduced by designing a procedure
whereby only feasible states are considered. A computer
program was developed using this procedure. In theory,
it can solve any problem that can be put in the State Space
Format, in practice, however, the program is limited as to
the size of the problem it can handle. At any instant of
time while generating the optimal solutions, the feasible
states of at least two successive stages must be available
in the computer core. This is the most important limitation
of the program and at present the number of feasible states
for any two successive stages is limited to 2500. The num-
ber of state variables should also be made as small as
possible otherwise excessive computing time may result.

A realistic space program planning application was
then formulated and put in state space format. A fixed time
as well as minimum time program planning schedule problems
were solved. The computer program was used to generate
classes of optimal solutions as well as two particular
solutions. The feasibility and usefulness of the concept
as well as the computer program were i:;g?strated.

Elhe

J. E. Nahra

N
71L0973Vu, Z;ZQ&_J
1015-MPO cp M. P. Odle

1032-JEN~

Attachments
References
Appendix

A

REFERENCES

Dreyfus, Stuart E., Dynamic Programming and the Calculus
of Variations, Academic Press, New York 1965.

Nahra, J. E., "Programming of the Optimal Evaluator Sub-
program", Addressed Memorandum to C. L. Davis, May 14,
1970.

FORTRAN V, Programmer's Reference Manual, UNIVAC

Appendix

GPDFIL.GPALG,GPALG
0 COMPILED BY 1201 BCS7E ON 20 JAN 71 AT 14306009,

PROGRAM

GE USED: CODE(1) 0014213 DATA(D) 144511; BLANK COMMON(Z2) 000000

IN BLOCKS

LOKPER Q00064
PARAM 000025

VAL REFERENCES (BLOCK, NaME)

PACK
ENTER
COMPER
CONSTR
COoST
COoSLIM
NEXTST
CoMCOS
SEARCH
POFILE
UNPCKS
PRTOUT
FINVEC
PRTOUF
PRTCHN
NINTRS
NRNLS
NERR2S
NWDUs
NIOLS
N1Oo2S
NWBUS
NREWNS
NRBUS
NWEFS
NSTOPS

3E ASSIGNMENT (BLOCK, TYPE, KRELATIVE LOCATION, N.ME)

000073 12L 0o0} 000121 14L 0001 000033 1426 0001 Uou145

000311 254 Op0! 000503 2626 0oo1 000506 2646 0001l 0006540
000645 3336 000! 000657 3436 0001l 0006464 3476 0001 00U344
000356 Jé6L 0p01 000715 36136 gool 000721 3676 000} w003d73
001024 4216 0001 001060 4366 0001 001074 4446 0001 uollivl
001137 4676 0001} 001143 4736 0001 000434 SOL 0001l uou40s
001167 5066 0pol 000441 521 gool 001243 5446 gool 000s23
00133% 5726 0001 001341 57é¢ 0001 000612 S8L gool voo702
002710 é002F 0oo0 002716 6003F 0000 002743 &004F 0001 001360
001030 63L Ono01 001117 65L gool 0ol204% 70L ao0o1 ool211l
002730 76F 0nO1 001301 8oL (1] 1o 001320 81tL 0001 uol1408

DN NS W W

*

—TC e ve et b b [e ey = X

1.
2
kY
4e
5
Se
5
5
be
7
8e
9
109
11le
12¢
13»
14»
1S
160
17
18¢
19
200
2108
22
23
240
259
269
27
28¢
29
30y
le
32
33
I4»
35
kYY

37e

e ¥ o NaNaXaNaXaNaNaNaNaNaNaNaNaXaXaNaNaala e lal

000000 COST
002971 10
002615 14
0025%20 1T
002603 JJJJdJ
002560 XF
002601 LPST
002612 MY2
N02617 Ny
000000 NTPER
000404 pPST
002600 Vv
000001 XIN

END

- A2 -

Dn0D 1 000340 CP oooc ¢ 00D33Y ¢S 000U L LO2556
0pu0 I 002630 DI CODOU 1 002616 IFJ 0000 1 uD«¢é26
0n00 | 002625 [JMl 0003] 000up2 IOKPER 0000 1 wD257C
0p00 | 002624 0000 1 NO2583 JIN 000U 1 002614
0p00 1 002573 Uyt 0004 T 000000 JTIME 000G 1 vD2631
On0O0 | 002606 KIND 0000 | 002575 KOUNT 0000 L 002561
0n00 | 002620 LPST2 000G | 002586 MAXJ 0000 1 ubuU45H4
0nU0 I 002564 NCONTR 0000 | NO2572 NFIN 0000 I u02s27
0003 | 00000l NONPER 0000 1 002574 NPAGE 000U [v02642
0p00 | 002622 NTR 000U 1 D02545 NX 00DU R VUD26ULHM
0n00 R 002632 SKI1P 0000] 000430 ST 0000 L u0«SS7
0on00 R 002567 VINITY 0000 R D02605 VvV 0000 I u02753
0p00 R 007657 xV

DIMENSION U(20411),CS(20),CP(20)4PST(20),ST(20)+XIN(2U),
MAXXY{2092) ,JOKPERISO) o XFIN(1000) ,XV(2000),1P(20)
DIMENSION [T(20)

DIMENSJOUN LENGP(10)

INCLUDE DECL,LIST
PARAMETER MAXX®2500
ODIMENSION X(MAXX,20)

EQUIVALENCE(XV (L) ;X(142))
COMMON/LOKPER/NTPER ¢NONPER, 1 OKPER
COMMON/PARAM/JTIME JKIN
INTEGER U X ,CSsCPyPST ST oXINWXFIN

LOGICAL FIRST,,TABFLG,KF,KPERM

LOGICAL PRFLG

DATA PRFLG/+TRUEW/

NAMEL IST/CONDAT/JINoXIN U yNCONTRyNXyMAXJ,VINIT,I0QUT,

KPER

M, l0

INPUT ViIA CUNDAT

JIN INITIAL TIME g

XIN VECTOR oF INITIAL STATE CoNFle

Y] MATRIX OF VALUES OF CONTRobL VBLS
NCONTR NUMBER OF CONTROLS

NX NUMBER OF COMPONENTS OF STATE VECTOK
MAXJ MAXIMUM TIME ALLOWABLE

VINIT INITIAL COST v

[ourt OUTPUT {NDICATOR

m] PROBLEM TERMINATJON CONTROLLED BY JTIME RgACHING

=2

MAXJe

ENTIRE RESULTS ON FILE 10
SAME AS | EXCEPT REQUEST STATE NUMBER({S) rOR BACK=
CHAIN BEFORE EXIT,

PRINT STATES AT TIME MaXJ AND EXIT,

STORE

=) PROBLEM TERMINATION CONTROLLED BY FINAL CoONSTRAINTS,
PRINT STATES WHMEN CONDITION SATISFIED AND EXIT,
STORE ENTIRE RESULTYS ON FILE 10,

=4 SAME AS) EXCEPT REQUEST STATE NUMBER(S) fOR BACK=
CHAIN BEFORE EXIT,

=% PROBLEM RESULTS ALREADY ON FJILE |0es REQUEST STATES
FOR BACKCHAINING,

KPERM FLAGSTRUE, KEEP FEASIBLE pERMUTATIONS

Fi
11
10
JJ
J7T
KP
MA
vl
NP
P

TA
X

38
39
4Q0e
410
42
43
44¢
45+
4ée
47
48
49
50
Sle
52
53¢
S4e
55
54
bL7e
58w
59»
60
61e
62
613»
b4
45
bb6»
670
680
69
709
71
720
73
74w
75+
769
77
78¢
79
80
81
82y
83
840
85
86
87
88
89
90
91
92
93

P40

e NaRataRaRaXaRakaXal

(e ¥aNakal

10

[aNaXal

i12

13

[aWaNal

i4

[aNaKaNakal

- A3 -

GENERATED FOR TABLe LOOKUP
=FALSE, DONOT KEEP PERMUTATIONS

10 PROBLEM IDENTIFIER, & ALPHABETIC CHAR

NAMELIST/PRTDAT/IDyXFINGNFIN
INPUT V1A PRTDAT

10 PROBLEM IDENTIFIER FOR PRINTING

XFIN VECTOR OF PLACE IN STATE ARRAY OF
SOLUTIONS ARE INTERESTED N SEEINu

NFIN NUMBER OF FlInak VECTOR TRACES, | E

NUMBER OF INDICES IN XFIN

INITIALIZATION

JT=]

NPAGE=]
KOUNT=0
NTPERs]
MAXXJ(JT41)m]
MAXXJ(JTy2)m
FIRST=«TRUE.
NIPTRJYm|}

INPUT SECTION

READ(59CONDATENDm&OUSD)

IF (10UT=5)5,70,70

JYIMEsJIN

DO 10 Is]yNX

CS(L)=XINC(])

VeVINIT

CALL PACK(CS,sCPyPSTyNXyNCONTR LPST)

KOUNTuKOUNT#}

CALL ENTER(X PSTyVINITs1,0,LPST,NPAGE)
XV(1)sVINIT

MAXXJIJIT*L)) mMAXXJ(JTe2) %]

MAXXJ(JT*],2)=MAXXJ(JUT2)

COMPUTE A PERMUTATION OF v

CALL COMPER(IP WiNCONTR,TABFLGsFIRST,NPER,$50p0)
DO 13 [=]1,NCONTR

JIJduym=iPr(])

CPiI)mUT,JJJJJ)

AT JUTIMgwJIN TEST FEASIBILITY OF IN{TIAL STATE AND PERMUTATION

IF (JTIME «GTs JIN) GO TO 15
CALL CONSTR(CSCPNX,NCONTR,S$235)

INITIAL STATE AND PERMUTATION SATISFY CONSTRAINTSs [r KPERM
1S TRUE, SAVE THIS INDEX NPER AS THE NUMBER OF A FEASIBLE PER-
MUTATION

IF (oNOT, KPERM) GO TO 18
JOKPER(NTPER) »NPER

‘e

95
96
97
98¢
99
00e
Ole
02»
D3s
Q4
.05
Uée
Q7
0ge
09
10e
ile
12»
.1 3e
14
1Sw»
169
170
18
19
20
21
22
239
240
25¢
260
270
289
29
3.
e
32e¢
33»
Iy
35
36
37
38
37e
40e
419
42¢
43¢
44
45¢
469
47
48»
499
S50

Sie

- A4 -

NTPERaNTPER+}

AT 15, aALL CONSTRAINTS OF THIS STATEg AND PERMUTATION ARE SAT=-
1SFIEues COMPUTE COST Pe

[aNaNaXal

15 PaCOST(CS)CP ¢NX,NCONTR)

[ala)

TEST FEASIBILITY OF P

CALL COSLIM(P,S$35)

[aNaNal

COST CONSTRAINT SATISFIED, DERIVE NgaT STATE

CALL NEXTST(CS4CP,ST,NX,NCONTR)

oN

NEW STAYE IN VECTOR STe TEST FEASIBILITY

(g]

CALL CONSTR(ST CP,NX,NCONTR,$35)

NEW STATE SATISFACTORY, COMPUTE V ASSOCIATED WITH ST AND CP.
ALSO TEST FEASIBILITY

[aNaNakKal

CALL COMCOS(CSsCP4STyPsV,vV,$35)

COST V ACCEPTABLE., SEARCH LIST OF STATES AND CONTRQL CONFIGU
RATIONS AT THAT JTIME TO SEE IF THIS STATE ALREADY CONSIDERED.

[aliaRaNal

CALL SEARCHIX MAXXJUJUT*1 1) MAXXJI(JT*1,2) ST ynXsKF KIND)

KF TRUE MEANS ST EX]STS ON LIST X

[a Nalal

IF {(KF) GO TO 25

ST CONFIGURATION DOES NOT APPEAR ON LIST Xe ENTER T WITH THE
CORRESPONDING PERMUTATION CP AND V AND LINK TO PREVIOyYS STATE

[aRaNalsl

CALL PACK{ST,CP PSTyNXyNCONTRyLPST)

MAXXJ(JIT*] ,2)8MAXXJ(JT*]2)¢])

KOUNTSKOUNT+]

IF (KOUNT o+GTe MAXX) CALL POFILE(JT NPAGE,LENGP X MAXXJ,

. LPST KOUNT 4 NIPTRJ,$6050)

CALL ENTER(X PSTyVVIMAXXJ{JUT*1,2) NIPTRJ,LPST NPAGE)
JUIEMAXXJ(JT 1, 2)
XV(JJJ)svy

GO0 To 3%

STATE St APPEARS ON LIST Xe¢ CHECK fFOR BEST COST V, [F NEW ONE
IS BETTER, CHANGE PACKED U TO CP AND STORE NEW COST AND LINK

O NON

25 BVaXv(KIND)
IF (VV +GEs BV) GO TO 35
CALL PACK(ST CPyPSTyNX I NCONTRyLPST)
CALL ENTER(X,PSTsVVIKIND,NIPTRJ)LPST,NPAGE)
XV(KIND)sVY

GO TO NEXT STATE AT TIME JUTIME

(e XaNal

52»
53
S4e
55
Y-X
57

58e
59
40»
ble
62
63
b4 e
650
Y-
670
68e
69
70
71e
T2¢
73«
74e
75«
760
779
78¢#
79
80e
8le
82¢
83s
84
85
840
87
88
89e
90
91l
92
93
940
95
P69
97
98¢
99
00»
Ols
02
0ds
04e
QS5e
0é6»
07

08e

[aNalal N NANNO

aNaNalaNal

s X2 aNal

YOO

(aNalaNal

k}-

36

37

5000

40

S0

52

.
6002

55

- A5 -

NIPTRU=NIPTRU*I
IF (NIPTRY JLEe MAXXJ(JT,2)y GO 7O 237

EXHAUSTFD ALL STATES AT LEVEL JTIME FOR THIS CPe GET NEXT
PERMUTATION AFTER REINITIALIZING THE JTIMg BLOCK OF XS

NIPTRJUSMAXXJ(JT 1)

CALL UNPCKS({XsNIPTRJ,CSyNX)
VXV (NIPTRJ)

G0 To 12

PUT NEW STATE FROM x INTO CS

CALL UNPCKS(XosNIPTRJ,CS,NX)
VXV (NIPTRJ)
GO To 14

AT 5000 ALL PERMUTAT]ONS EXHAUSTED gOR TIME JTIMEe ALL NEW X'S
GENERATED AND TESTED AND STORED FOR TIME JTIME+l, BEGIN wORK
ON NE# TIME

IF (UTIME «GTe JIN) GO TO 40

AT INITIAL TIME = MIGHT WANT TO SAVE FEASIBLE PERMUTATIONS IN
TABLE

IF (KPERM) TABFLG®eTRUE,
JYIMESJTIME+]
GO TO (50,50,60,60,70)10U7

10UT=] OR 10UT=2, MAXJ SPECIFIED = TEST |F MAX STAGE gXCEEDED
IF (JTIME oGEe MAXJ) GO TO 55
NOT YET AT MaAX TIME = GO ON TO NEXT TIME gLOCK

JTsJdT+]

MAXXJEJT®]L 1)mMAXXJ(JT92) 4}
MAXXJ(JT®142)mMAXXJ(JUT2)
FIRST=oTRUE.

NONPER=]

MJLEMAXXJ(JT, 1)

MJU2=MAXXJ(JT 4 2)

IF (PRFLG)
WRITE(6,6002)JT sJTIME MUl M2y (IX(TTIT19dU)adUm147),
IT1mMJL4MI2)

FORMAT(IHQ,,"MAIN? ,418/(1X,7(012,2Xx)))
GO TO 36

JTIME GYR THAN MAXJ
OQUTPUT aLL FINAL VECTORS AT JUTIME LEVEL

TJeMAXXJ{JT* 1)
IFJRMAXXJ(JT+},2)
LENGP(NPAGE)sIFJ
NJs FJ=]Je+l

DO 56 1s],NJ

)9e
{De
lle
i2e
13e
140
|S5e
16w
17 »
18e
19¢
0
21
22¢
23
24
25
2be
27
28
29
30»
Jle
32
33
34
k3%
36
37
38e
J9e
409
41
42
439
440
459
4ée
47
48e
499
S0se
51e
829
Sle
$4e
S5¢
Sér
S7¢
S8e¢
5%
60¢
bl
620
6l
b4y
65

NOOOD

56

57
58

581
59
591

60

62
6

64
65

66

67

- A6 -

XFIN(I)=lJsl=]

CALL PRTOUT(X, JTIMEsXFINJNJ NXyID,MAXKJyJT#+])
WRITE(LIO) 1D

LPST2=LPST+2

NPMIsNPAGE=}

IF (NPMl +EQe O) GO TO S8

NTR=(Q

DO 57 [al,NPMI

NTRSNTR+LENGP(T)
WRITECIO)JTIMESLPST2 NX NCONTRINPAGE yNTR,, 1 J, (LENGP(K))
K=] yNPAGE)

IF (NPM1 +EQs O) GO TO S9

REWIND 3 _

DO 581 I®],NTR

READ(3) (IT(K)yKs],LPST2)

WRITE(10) (IT(K) k=l ,LPST2)

DO 591 Is),IFJ

WRITE(LID) (X{1sJ),Jdm],LPST2)

READY FoR OUTPUT SEQUENCES

END FILE 10
IF (I0UT +EQe 1) GO TO 6050
GO TO0 70

I0UT=3 QR 10UT=4e FINAL CONDITIONS SPECIFIED « PRINT pUT ALL STATE
VECTORS THAT SATISFY THE FINAL CONDITIONS

CALL FINVEC(I{XoJT MAXXJINX XFINyNJ)
IF (NJ +EQs O) GO TO 52

CALL PRTOUT (X)JTIME s XFINGNJJNXyID MAXXY yJT*})
WRITE(10) 1D

LPST2ulL.PST¢2
MAXXJEJT®L 3 2)mNJIeMAXXI(JTe] 1) =]
IPJSMAXXJ(JT+])y2)

TJeMAXXJ(JTel 1)

LENGP (NPAGE)=sIFJ

NPMIaNPAGE=]

IF (NPM]1 +EQe 0) GO TO 43

NTR=Q

DO 62 Is] NPMI

NTReNTReLENGP (1)
WRITE(LO)JTIME LPST2 NX NCONTRINPAGE yNTRy 1 J,(LENGP(K)
Ks} yNPAGE)

IF (NTR +EQ¢ 0) GO TO 65

REWIND 3

DO ¢4 Iw] yNTR

READI3) (ITI(K)Km] , LPST2)
WRITE(LIO) (JT(K)ok®]l,LPST2)
{JMlslJ=]

DO 66 ®)1,1JM]}

WRITE(IO) (X(1od)yJ=],LPST2)

PO 67 el yNJ

IleXFIN(])

WRITECLIO) (XC1lod)odmlaLPST2)

READY FoR OUTPUT SEQUENCE TRACE

-3
7
8e
G e
IO'
ll‘
!2.
r3e
T4y
'ge
Tée
17
78¢
719e¢
iQe
ile
32e
83
B4e
gSe
Bé6e
87»
8ge
89
0
9t1e
920
93¢
94
9%
960
97
98¢
99
00s
Ole
02
03
04
05
Dée
D7
08y
09e
10

(2 XaNaNaNaNal

[aXaNaNal

- A7 -

END FILE 10
IF (JOUT +EQs 3) 6O TO 6050

[OUT=3,4,0R5, ACCEPT INPUT OF INDICES OF STATES AS FINAL CONu~
ITIONS THAT ARE TO BE DISPLAYED

READ PRTDAT FOR THE OUTPUT INFORMAT]ON

70
6003

¢ ING')

71

WRITE(6,6003)
FORMAT{IH],'WHICH PROBLEM Ip IS OF INTEREST FoR BACKCHAIN

READ (5)yPRTDATH,END=6050)
IF (NID «EQ. ID) GO0 TO 85
N1D=lD

REWIND 30

ID IN PRTDAT SPECIFIES wH[CH PROBLEM INTERESTED INe sLL ARE UN
FILE 10 THEREFORE MUST SEARCH FOR RIGHT 1Ip

75

7%1
76

REAOD(10,END=751) {01!

READ(10) JT1,LPST2,NX NCONTR yNPAGE NTR,IJy (LENGP (K}

Ks]l yNPAGE)

IF (1Dl +EQe. ID) GO TO 80

WRITE(6,76)

FORMAT(1HO,* WRONG PROBLEM [D, THAT PROBLEM NOT STOREV

+ON FILE 10%)

80

81
811

82

83

6004

8s
6050

D OF COMPJILATION:

60 To 6050

LPSTeLPST2=2

IF (NTR +EQ., 0O) GO 7O 811}

Do 8} ISl NTR

READ(10) SKIP

IFJoLENGP {NPAGE)

DO 82 Is],IFJ

READ(10) (X(lsd)ouml,LPST2)

NImlFUs]Je]

DO 83 [=],NJ

XFIN{])mslJye]=]

CALL PRTOUF (X sJTI XFIN)NJ Ny, ID})

WRITE(6,6004)

FORMAT(JHO,* NOW INPUT INDICES FOR BACKCHAININGY)
60 TO 71}

CALL PRTCHN(X3JdT1 XFINJNFIN,NXyNCONTR NPAGE ,LENGP)
CONTINVE

END

NO DIAGNOSTICS,

- A8 -

SEARCH»SEARCH
)0 COMPILED RY 1201 BCS7E ON 07 JAN 71 AT 14:09:10.

JUTINE SEARCH ENTRY POINT 000077

AGE USED: COpDE(1) 0001257 DATA(Q) 000054; BLANK COMMON(2) 000000
INAL REFERENCES (BLOCKr NAME)

3 PACK

+ NERK3$

AGE ASSIGNMENT (BLOCKr TYPEs» RELATIVE LOCATION. NANE)

1 000051 1oL 000l 000030 1166 0001 000040 1216 0001 000057 3
h] 000034 INJPS 0000 I 000031 J 0000 I 000027 LT 0000 I 000024 N\
J 1 000Q00 T 0000 I 000026 T1
1% SUBROUTINE SEARCH(X»MJL1rMJI29STINXKF»KIND)
2% IMPLICIT INTEGER (A=2)
3% INCLUDE DECL(LIST
3 PARAMETER MAXX=2500
3% DIMENSION X (MAXXr20)
2% END
b DIMENSION ST(1)rT(20)
S C
6% C SEARCH ARRAY X FOR STATE ST ONLY AT STATES GENERATED DURING
7« C TIME JTIME AS DETERMINED BY MAXXJ(JT+101)eeeMAXXJ(JUT+102)
8 C
9% LOGICAL KF
10x% KF=.FALSE.,
11x% NWFS=(NX=1)/4+1
12% NWFSP2=NWFS+2
15% CALL PACK(STsT1rToNXr1sLT)
1l4x DO 10 I=MJl.MJ2
15x% 0O 20 J=1/NWFS
lo* IF (T(J) «NE. X(I»J+2)) GO TO 10
17x% 20 CONTINUE
18% C
l9x ¢ THERE IS A MATCH IN STATES AT STATE I, GO TC 30
20% (of
21x 60 TOo 30
22x% 10 CONTINUE
23 C
24%x C NO MATCH., RETURN O
25% C
26% KIND=0
2% RETURN
28% 30 KF=eTRUE,

29% KIND=1

S0%
31%

IND OF COMPILATION:

- A9 -

RETURN
END

NG DIAGNOSTICS.

- Al0 -

COMPER»COMPER
JO COMPILED pY 1201 BCS7E ON 07 JAN 71 AT 14:09:03.

JUTINE COMPER ENTRY POINT 00021€

AGE USED: COpE(1) 0002443 DATA(O0) 000026; BLANK COMMON(2) 000000
VON BLOCKS:

3 LOKFER 0000603

RNAL REFERENCES {(BLOCKe+ NAME)

4 NERR4S
S NERRJ3%

AGE ASSIGNMENT (BLOCKe» TYPE» RELATIVE LOCATION, NAME)

1 000027 1oL 0001 000171 1o0L 0001 000173 110L 0001 000020 1.
1 000112 1466 0001 000137 1616 0001 000145 164G o0uvo1 000062 2!
1 000120 60L 0001 000123 65L 0001 000165 85L 0000 I (00000 1
3 1 000002 1Q0KPER 0000 I 000001 I@ 0000 I 000005 JJ 0000 I 000003 NI
0 I 0000V2 NT 0003 1 000000 NTPER 0000 I 000004 NUP
i* C
2« C FOR COMPUTING PERMUTATIONS OR FOR ACCESSING NEXT FEASIBLE PERN
3* C
4x SUBROUTINE COMPER(NCPsU/NC»TARFLG¢FIRSTINPER?S)
5% IMPLICIT INTEGER (A=2)
6% LOGICAL FIRST,TABFLG
7% DIMENSION NCP(1),U(20,11)»IOKPER(1)
8% COMMON/LOKPER/NTPER » NONPER » IOKPER
G IF (TABFLG) GO TO 50
10% NONPER=1
11* ¢
12 C NO PABLE LOOKUP OR FIRST TIME GENERATING PERMUTATICONS
13x €
14% IF («NOT. FIRST) GO TO 10
15% NPER=1
l16* DO S I=1/NC
17% 5 NCP(I)=2
18% FIRST=.FALSE.
19% RETURN
20% 10 NPER=NPER+1
21l* GO0 20 1G=1.NC
22 NT=NCP(IQ)+1
23x% IF (NT .LE. U(IQs1)+1) GO TO 25
chx NCP(1Q)=2
25% 20 CONTINUE

26% C

27 %
28 %
26 %
30%
51%
S
33%
54 %
35 %
36 %
37 %
S8x%
39%
40x%
41x%
He*
L
4y *
4H%x
Gox
47%
48x
49x%
SUx
Olx
bex

D OF COMPILATION:

25

&0

51

60
65

80

85
100
110

-A1ll -

CCNSIDERED ALL PERMUTATIONS

RETURN 7
NCP(IG)=NT
RETUKN
IF (NONPER «GTs NTPER) RETURN 7
IF (NONPER +GTe 1) GO TO 60
DO S1 I=1+NC
NCP(I)=2
NLOw=1
GO TO 65
NLOW=IOKPER (NONPER=1)
NUP=ICKPER (NONPER)~1
IF (NUP=-NLOW ,LT, 0) GO TO 110
DO 100 JJ=NLOWs/NUP
DO 80 1IQ=1»NC
NT=NCP(1IQ)+1
IF (NT JLE«. U(IQe1)+1) GO To 85
NCP(IQ)=2
CONTINUE
GO0 TO 100
NCP(IG)=NT
CONTINUE
NONPER=NONPER+1
RETURN
END

NO DIAGNOSTICS.,

- A 1l2 -
ENTER'ENTER
COMPILED BY 1201 BCS7E ON 07 JAN 71 AT 14:08:11.
TINE ENTER ENTRY POINT 000044

E USED: CODE(1) 000060: DATA(0) 0000237 BLANK COVMON(2) 0006000

AL REFERENCES (BLOCKr NANME)
NERR3S%

E ASSIGNMENT (BLOCKs TYPE» RELATIVE LCCATION» NAME)

000023 1136 0000 I 000000 1 0000 000005 INJPS 0000 I 000001 LP
1+ C

2%« C SUBROUTINE ENTER PUTS A ROW IN ARRAY X AT THE PLACE SPECIFIED
I C BY LINO. THE INFO ENTERED IS IN PST OF LENGTH LPST. FIRST wORD OF
4x C X I+E. X(LINOv1) IS BACK LINKe 2ND WORD» X(LINC¢2) IS V.

“ C X(LINO»3) eee X(LINO?3+LPST) IS PST.

6% C

7% C

8% SUBROUTINE ENTER(X»PST»VeLINO,LINKsLPST¢NPAGE)

9% IMPLICIT INTEGER (A=UrW=2)
10% INCLUDE DECL(LIST
10x% PARAMETER MAXX=2500
10% DIMENSION X(MAXX»20)
10% END
11% DIMENSION PST(1)
12% FLD(D»189X(LINOr1))=NPAGE

13% FLD(18+18¢X(LINOy1))=LINK
14 DO 10 I=1+LPST
15% 10 X(LINOrI+2) =PST(I)

1o+ LPST2=LPST+2
17% RETURN

1% END

i OF COMPILATION: NO DIAGNOSTICS.

- Al3 -
PACKPACK
+ COMPILED BY 1201 BCS7E ON 07 JAN 71 AT 14:07:30.
ITINE PACK ENTRY POINT 000205

& USEp: COpDE(1) 000232: DATA(0) 0000477 BLANK COMMQON(2) 000000

/AL REFERENCES (BLOCK: NAME)
NERR3$

£ ASSIGNMENT (BLOCKe» TYPE» RELATIVE LOCATION, NAME)

000055 1106 0001 000121 1226 0000 I 000002 I 0000 (000007 IN
1 000001 NwFP 0000 I 000000 NWFS 0000 I 000003 NWFSP1
1* C
2 C SUBROUTINE PACK PACKS CURRENT STATE VECTOR AND CURRENT FERMUTATION
I*x ¢ VECTOR INTO 1/4 OF SIZE - 4 INDICES PER WORD.. THE FIRST
4 C (NX=1)/4+1 WORDS ARE THE STATE VECTOR, THE NEXT NC=1/4+1 WORDS
S+ C ARE THE CONTROL VECTOR.
6x C
7% SUBROUTINE PACK(CS+CPsPSTINX/NCeLPST)
B IMPLICIT INTEGER (A=2)
S* DIMENSION CS(NX),CP(NC)PST(1)
10% NWFS= (NX=1)/74+1
11x NWFP=(NC=1)/44+1
l1ex DO 10 I=1/NWFS
13% FLD(0r9yPST(I))=CS(4%X]I=3)
14x FLD(S¢SsPST(I))=CS(4%]=2)
15% FLD(18¢9,PST(I))=CS(4xI=1)
16% FLD(27¢9sPST(I))=CS(4x%x]I)
17% 10 CONTINUE
1g* NWFSPL=NWFS+1
1G% DO 20 I=1+NWFP
20* JSI+NWFSP1 -1
21% FLD(0r9sPST(J))I=CP(4%I=3)
22+ FLD(S19/PST(J))=CP(4%I=2)
23% FLD(18¢9,PST(J))=CP(4%I=1)
24x* FLD(2709,PST(J))=CP(4%1)
25% 20 CONTINUE
26x LPST=NWFS+NWFP
27x% RETURN
28% END
ID OF COMPILATION: NO DIAGNOSTICS.

- A 14 -
UNPCKSrUNPCKS
COMPILED BY 1201 BCST7E ON 07 JAN 71 AT 14:07:21.
TINE UNPCKS ENTRY POINT 000074

E USEC: COpDE(1) 000111¢ DATA(O) 000030: BLANK COMMON(2) 000000

AL REFERENCES (BLOCKe NAME)
NERRJ3%

£ ASSIGNMENT (BLOCK: TYPEs RELATIVE LOCATION» NAME)

000036 1126 0000 I 000001 I 0000 n0000S INJPS 0000 I 000000 NW
1 C
2 C SUBROUTINE UNPCK EXTRACTS THE STATE VECTOR FCRM ARRAY Xo» THE
3 C NIP TH ROW.
4x C
5* SUBRCUTINE UNPCKS(XsNIP+CSeNX)
6+ INCLUDE DECLLIST
6% PARAMETER MAXX=z2500
6% DIMENSION X{(MAXX»20)
o* END
7% DIMENSION CS(1)
&% IMPLICIT INTEGER(A=2)
9 NWFS=(NX=1)/4+1
lux DO 10 I=1+/NWFS
11x CS(4xI=3)=FLD(0,9»X(NIP»I+2))
12% CS{u%I=2)=FLD(949+ X{NIP:1+2))
13» CS(4%I=1)=FLD(18+1QsX(NIP,1+2))
14# CS(4xI) =FLD(27+9¢X(NIP+142))
15% 10 CONT INUE
l6% RETURN
17x% END
iU OF COMPILATION: NG DIAGNOSTICS.

- A 15 -

UNPCKP 2 UNPCKP
COMPILED BY 1201 BCS7E ON 07 JAN 71 AT 14:03:55.

TINE UNPCKP ENTRY POINT 000100

E USEL: CODE(1) 0001143 DATA(Q) 00002¢: BLANK COMMON(2) 000000

AL REFERENCES (BLOCK» NAME)
NERRIS

B ASSIGNMENT (BLOCKe TYPEs» RELATIVE LOCATIONs» NAME)

000043 1136 0000 I 000002 I 0000 000006 INJUPS
i* SUBROUTINE UNPCKP(XeNIP+CP¢NC,NX)
2% INCLUDE DECL/LIST
2% PARAMETER MAXX=2500
2% DIMENSION X(MAXXr20)

2% ENO

S* DIMENSION CP(1)

4% IMPLICIT INTEGER (A=2)

5% NWFS=(NX=1) /441

b* NWFP= (NC=1)/4+1

7% CO 10 I=1+NWFP

Bx% CP(yx1=3)=FLD(049+ X(NIP»I+NWFS+2))
9% CP(4xI=2)2FLD(999 ¢ X(NIP»I+NWFS+2))
10+ CP(4*I=1)=FLD(18+9 ¢ X(NIP)I+NWFS+2))
l1x CP(4xI)= FLD(27+19s X(NIP»I+NWFS+2))

12% 10 CONTINUE

13% RETURN

14x% END

i OF COMPILATION: NO DIAGNOSTICS.

0000 I 000001 Nwt

- A 16 -

POFILEPOFILE
COMPILED BY 1201 BCS7E ON 07 JAN 71 AT 14:08:55.

TINE POFILE ENTRY POINT 000232

L USED: COpDE(1) 000273+ CATA(Q) 000077; RLANK COMMON(2) 000000

AL REFERENCES (BLOCK» NAME)

NwBU$
NIOL1S
NIGe®
NwDU$
NERKU4S
NERR 3%

£ ASSIGNMENT (BLOCKe TYPE,» RELATIVE LOCATION» NAME)

0u0007 1Q0OF 0001 000200 1000L 0000 000014 1001F 0001 000052 11°
000115 1376 0001 000142 1476 0001 n00143 1526 0000 I 000002 I
000045 INJPSE 0000 I 000005 IS 0000 I p00006 ISS 0000 I 0600003 J

I 000000 LpPST2

1x SUBROUTINE POFILE(JT¢NPAGE»LENGP s X+ MAXXJrLPST+KOUNT»
2* ° NIva)

3% INCLUDE DECL,LIST

S* PARAMETER MAXX=2500

3% DIMENSION X {(MAXX220)

3% END

4x CIMENSION MAXXJ(2002) LENGP (1)
S5 C

6x C STARTING WITH INDEX 1 PUT OUT UP TO MAXXJ(JT=1,2)
7% C

g* IF (JT=1 .EG. 0) GO TO 1000

9x LPST2=LPST+2

10= LENGP (NPAGE) =MAXXJ (JT=1+2)
11+ LP=LENGP (NPAGE)

12x DO 10 I=1/LP

13% 10 WRITE(3) (X(I,J)sJ=1,LPST2)

14% WRITE(6,100) NPAGE»LENGP(NPAGE)
15% 100 FORMAT(1HO»* IN POFILE ',218)
lex C

17* c FIX LINKS AND PAGE NUMBER IN REMAINDER
18% C

19 IFJ=MAXX=MAXXJ(JT 1) +1

20x* ISSMAXXJ(JT+1r1)

21« NPAGE=NPAGE+1

écx* DO 15 IsISeMAXX

23% FLD(0r18¢X(I¢1))=NPAGE

24 x* FLD(18¢18¢X(I+1))=FLD(18+18¢X(Ir1))=LP

- A 17 -

1k 15 CONTINUE

& C '

g C MCVE STATES GENERATED AT TIME JT AND JT+1
i% C

1% ISS=MAXXU(JTr L)

)% DO 20 I=ISSeMAXX

¥ DO 20 J=1,LPST2

i* 20 X(I=ISS+1,J)=X(I,J)

% C

vk C FIX MAXXJ ARRAY TO REFLECT THIS CHANGE

)& C

1 ¥ MAXXJ(1,1)=1

% MAXXJ(192)SMAXXJ(JT»2)=LP

1k MAXXJ(2r1)E=MAXXI(102)+]

ik MAXXJ(202)=MAXX=LP

) * KOUNT=MAXXJ(2,2)

g NIP=NIP=LP

ik JT=1

§ % RETURN

» % 1000 WRITE(6,1001)

1k 1001 FORMAT(1HOs* THIS PROBLEM CANNOT BE CONTINUED BECAUSE MO
1 K +RE THAN 2000 STATES WERE GENERATED DURING ONE TIME SLOT.')
% RETURN 9

ik END

OF COMPILATICN: NO DIAGNOSTICS.

. - A 18 -
GPUF IL«FRTOUT«PRTOUT

OMFILEU 8Y 1201 BCS7E Of 18 JAN 71 AT 10:46:18.

Ne FRIQUT ENIRY POIiNT 000233
PRICUF ENTRY POINT 000265

USLLS COpE(1l) 0003135 DATA(D) 000130+% BLANK COMMON(2) 000000

BEFERENCES (BLOCK» NAME)

UNHCKS
NwDUS
N1iC1%
N1Ged
NERKID

ASSIGNMENT (BLUCKe TYPE» RELATIVE LOCATION» NAME)

Qubu3d2 100F 000U 600072 101F 0000 no006S 102F
000075 i406 ooyl 00nN132 1606 0601 n00142 1656
vuoue? 11 0600 000100 INJP% 0000 I 000031 u

JyuoOuLu0 NT 6000 R ULO0DOZ0 XV

INCLUDE DECL(LIST
PARAMETER MAXX=2500
DIVMENSION X{MAXXr20)

END

DIMENSION AF(1)NT(20)

DIMENSION MAXXJ(20:2)

INTEGER X»XF

WRITE(6,100) IDeJT

) YTIME =9,17/7/5X0'LINE*+5X»*COSTY)
WRITE(6,102) (NNoNN=12NX)
102 FORMAT (1H+920Xe10(SXr*X?»12)/)
U0 10 I=1eNJ
KSI+MAXXJ(JTTT2)
IT=XF (1)
XV=BOOL(X(11,2))
CALL UNPCKS(XyII/NToNX)
WRITE(60101) KeXVe (INT(J)rJ=1rNX)
101 FORMAT(1HO»18/F10.3,10(4X»18))
10 CONTINUE
RETURN
ENTRY PRTOUF (XeJT»XFeNJoNX»1ID)
WRITE(6,100) IDrJT
WRITE(6,102) (NN/NN=1+NX)
DO 20 I=1eNJ

LR IR BE SR B AR 2 R 2R BF BE R R K B S B Sk B K B R K A

SUBROUTINE PRTOUT(X»JT e XFoNJINXr IDeMAXXJI P JTTT)

0001 000026 120G

0001 c0G173 176G
0000 1 y0o0L26 K

100 FORMAT(1H1»10Xs *THE FOLLOWING ARE THE FINAL STATE VECIORS
e DETERMINED FOR PROGRAM 'yA6r' WHICH MET FINAL CONDITIONS AT*/11X.

<0

* ¥ ok R X H R

OF COMPILATION?

- A 19 -

II=XF (1)

XV=gOOL(X(I1,2))

CALL UNPCKS(Xx»IIsNT#NX)
WRITE(62101) TII#XVe(NT(J)rJ=1,NX)
CONTINUE

RETURN

tEND

WG DIAGNOSTICS.

- A 20 -
GPDFIL «PRTCHNFRTCHI
UMPILED BY 1201 BCS7E ON 18 JAN 71 AT 10:47:17.

Nt PRTCHN ENTRY POINT 000464

USEp: COpE(L) 0005363 DATA(D) 0002235 BLANK COMMON(2) 000000

REFERENCES (BLOCK» NAME)

NCOL%
UNPCKS
UNF(KP
NIO1%
N1O2%
NWwDUS%
NREw3
NRBUS
NERK3D

ASSIGNMENT (BLOCK» TYPE, RELATIVE LOCATION» NAME)

Quugel 1oL 0000 000146 100F 0000 000117 1000F 0000 000130 1001f
000us2 1276 0001 000111 1426 0001 000131 1526 0001 000216 2036
000243 2206 00Ul 000247 224G 0001 000307 2366 0001 00325 2466
000411 2776 0061 000152 3L 0001 000347 3oL 0001 (00426 3076
UlU44S 60L G001 000233 &1L 0000 I p000QO0 CF 0000 I 000024 CS
0000G50 FMTL 0000 I 000063 FMT2 0000 I 000101 I 0000 I 000110 ID
000115 J 0000 I 000100 JJ 0000 I 000106 JTN 0000 I 000103 K
QU104 LINPG 0000 I 000077 LPST2 0000 I 000112 LSKIP 0000 I 000116 M1
0U0107 NSKIP 0000 R 000113 SKIP 0000 R 000111 SPECS 0000 R 000102 XV
* SUBROUTINE PRTCHN(XeJToXFINsNFINsNXeNCONTReNPAGE +LENGP)

* INCLUDE DECL(LIST

* PARAMETER MAXX=2500

* DIMENSION X(MAXXr20)

* END

* DIMENSION CP(20),CS(20)»XFIN(1) +LENGP(1)

* DIMENSION FMT1(11)sFMT2(11)

* INTEGER CURPG

* INTEGER CS¢CP

* INTEGER X+ XFINeFMT19FMT2

= C

*x C SET UP FORMATS FOR PRINTOUT.

* C

* ENCODE (FMT1,1000) NX

* 1000 FORMAT(* (1HOr1 X2 4HTIME » 4X o 4HCOSTr7Xr ' 9120 * (2X o LHX 0 12))*)

* ENCODE (FMT2,1001) NX

* 1001 FORMAT(? (1HOr1XrI4sFBeleTH STATEr'eI29'(2X013)))

* 1002 FORMAT(1HO»2Xs "CONTROL* 1 11Xr20(2X213))

* CURPGSNPAGE

o L T R R

- A 21 -

LPSTZ=(NX=1)/4+(NCONTR=1)/4+4
U0 50 JJ=1+NFIN

C
C PICK uF EACH FINAL VECTOR SPECIFIED IN XFIN
c

I=XFIN(JY)

CALL UNPCKS(XeIsCSeNX)
C
c WRITE OUT TITLES. LABELS, AND FINAL VECTOR.
C

WRITE(6,100) JT
100 FORMAT{1H1,10X» 'REGIN BACKCHAIN AT TIME = '»I4r* wITH SEL
+tCTED FIKAL VECTOR')
XVIBEOOL(X(102))
WRITE(HeFMTL) (KiK=1eNX)
WRITE(6)FMT2) JTyXVe(CS(K) 1 K=1rNX)

RETRIEVE PAGE OF LINK
RETRIEVE LINK TO PREVIOUS STATE
UNFPACK THE PLRMUTATION THAT GENERATED CURRENT STATE

cCoeaaoo

LINPGSFLD(NelBeX(T21))
LINLIN=FLD(18918)X(Ie1))

CALL UNPCKP(X»I+CPsNCONTR¢NX)
JTN=UT

CONSIDER PREVIOUS TIME

[eX e X ¢

3 JTN=JTN=1
IF (JTN .LT. 0) GO TO 30

IF EQUAL» STIL WITHIN SAME PAGE
1IF (LINPG +EGe. CURPG) GO TO 19
MUST RETRIEVE PREVIOUS PAGE

[N e g OO0

REWIND 10
NSKIP=LINPG=1
READ(10) ID
KEAD(10) SPECS
IF (NSKIP «EG. 0) GO TO 61
LSKIP=0
DO 5 Kz1sNSKIP
5 LSKIP=LENGP(K)+LSKIP
0O & K=1sLSKIP
6 READ(10) SKIP:
61 NLEN=LENGP (LINPG)
U0 7 K=1eNLEN
7 READ(10) (X(Ksd)»J=1sLPST2)
CURPG=LINPG

C UNPACK STATE AND WRITE OUT AS PREVIOUS STEP IN ChAIN
10 CALL UNPCKS(XsLINLIN»CSrNX)

XVZBOOL (X (LINLIN,2))
WRITE(601002) (CP(K)sK=1+NCONTR)

- A 22 -

WRITE(6sFNT2) JTNe XV (CS(K) e K=1eNX)
RETRIEVE PAGE OF LINK
RETRIEVE LIKK TO FREVIOUS PAGE
UNFACK PERMUTATION THAT GENERATED CURRENT STATE

coOao

CALL UNPCKP(XeLINLINoCPeNCONTR?NX)
LINPGEFLD(O0r189s X(LINLINS1))
LINLINSFLO(18,18, X(LINLINYL1))

GO T0 3

IF NUT Ol LAST VECTOK FOr BACKCHAIN» REINITIALIZE FCR NEXT BACK=
CHAIN PRCBLLEM

coace

30 IF (JJ «EGe WFIN) GO TO 60
CURFG=NPAGE
MISCLRPG=1
LSKIF=L
U0 &5 K=1,M1
35 LSKII =LENGP(K)+LSKIP
READ(10) ID
READ(10) SPECS
00 36 K=1sLSKIP
36 READ(10) SKIP
NLENZLENGP (CURPG)
DO 37 K=1!NLEN
a7 KEAD(10) (X(KodJd)eJd=1,LPST2)
50 CONT1RNUE
60 RETURN
- END

OF COMPILATION? NG DIAGNOSTICS.

B R A IR G O I I T 2 R

- A 23 -

FINVECFINVEC
L COMPILED gY 1201 BCS7E On 07 JAN 71 AT 14:15:40.

JEINE FINVEC ENTRY FOINT 000054

GE USEp: COpE(1) 000073% DATA(O0) 000030; BLANK COMMON(2) 000000
ON BLOCKS?
PARAM 000002
INAL REFERENCES (BLOCKr NAME)
b UNPCKS

) NERK3%

\GE ASSIGNMENT (BLOCK+ TYPEs» RELATIVE LOCATIONs NAME)

L 000015 1166 0000 I 000000 CS 0000 I n00O13 I 0000 000015 It
5 000000 JTIME 0000 I 000012 NFJ 0003 I 000001 XIN

1x SUBRCUTINE FINVEC(XsJTeMAXXJeNXs XFINsNJ)

2% DIMENSION MAXXJ{(20¢2) e XFIN(1),CS(10)

3% INCLUDE DECL/LIST

3% PARAMETER MAXX=2500

% DIMENSION X (MAXX020)

3 END

L= INCLUDE COMLNKsLIST

4x* COMMON/PARAM/ JTIME»XIN(1)

4% INTEGER XIN

4% END

5% INTEGER X¢XFIN'CS

6 C

7%« C VECTORS FOR THIS TIME EXTEND FROM MAXXJ{JT+1),1) TO MAXXJ(JT+102)

8% NJ=0

9* NFJSMAXXJ(JT+102)=NAXXJ(UT+101)+1

10% DO 1000 I=1/NFJ

11x JUSMAXXJ(JT+1 1)+ 1=1

12% CALL UNPCKS(XrJJrCSrNX)

13% INCLUDE FINCNS/LIST

13x% END

14% NJSNJ+1

15% XFIN(NJ)=JJ

lox 1000 CONTINUE

17« RETURN

18% END

END OF COMPILATION: NO DIAGNOSTICS.

- A 24 -
CONSTR»CONSTR
) COMPILED BY 1201 BCS7E ON 07 JAN 71 AT 14:13:55.
JTINE CONSTR ENTRY POINT 000016

GE USED: COpE(1) 000G22; DATA(0) 000005; BLANK COVMMON(2) 000000
ON BLOCKS:

PARAM 000002
NAL KEFERENCES (BLOCK» NAME)
NERK4S

NERR3%

Gk ASSIGNMENT (BLOCKe TYPEs» RELATIVE LOCATION, NAME)
] 000000 INJPS 0003 000000 JTIME 0003 I 000001 XIN

kDIAGNOSTIC* THE NAME ST APPEARS IN A DIMENSION OR TYPE STATEMENT BUT IS NEVER REFEF

1x SUBRCUTINE CONSTR(CS'CPeNXeNC,$%)
2% DIMENSION CS(1)/CP(1)
3% INTEGER ST+CP,CS
4% C
5% C SUBROUTINE CONSTR TESTS THE FEASIBILITY OF THE STATE AND CONTROL
6% C CONFIGURATION AT TIME JTIME. THREE TYPI\ OF CONSTRAINTS MUST
7* C BE CHECKED = STATEer CONTROL» AND COMBIN?TION OF STATE AND CCNTROL
8% C
g% C THREE PROCEDURES PROVIDED BY THE USER D3 THIS = SCONST»CCONST,BCONST
10x ¢
lix INCLUDE COMLNK(LIST
11* COMMON/PARAM/ JTIME»XIN(1)
1ix INTEGER XIN
11% END
lex INCLUDE SCONST(LIST
12% END
13% INCLUDE CCONSTsLIST
13% END
4% INCLUDE BCONSTILIST
14x% END
15* RETURN
DIAGNOSTIC CONTROL CAN NEVER REACH THE NEXT STATEMENT
lex 1000 RETURN §
17% END

END OF COMPILATION: 2 DIAGNOSTICS.

- A 25 -

CCMCOS»COMCOS
) COMPILED BY 1201 RBCS7E ON 07 JAN 71 AT 14:13:05.

UTINE CONMCOS ENTRY POINT 00O0C1e

GE USEp: COpDE(1) 000022% DATA(O) 000005i BLANK COMMON(2) 000000
ON BLCOCKS:
PARAM 000002
INAL REFERENCES (BLOCKe NAME)
' NERR49%

) NERK3®

\Gk ASSIGANMENT (BLOCKr TYPE» RELATIVE LOCATIONs NAME)

) 000000 INJPS 00603 000000 JTIME 0003 I 000001 XIN
1x* SUBROUTINE COMCOS(CS+CPeSTePaVIVVLS)
2% DIMENSION CS(1)¢eCP(1)9ST(1)
3* c INTEGER CS*CP,ST
*
5« C COMCOS COMPUTES COST VV FROM THE STATE AND CONTROL AND PARTIAL
6x C COSTs IT ALSO CHECKS IF THE COST SATISFIES ANY CONSTRAINTS.
7% C PROCEDURES TCOST AND VCONST ARE USED.
8% C
9% INCLUDE COMLNK(LIST
9% COMMON/PARAM/ JUTIME»XIN(1)
9% INTEGER XIN
9% END
10% INCLUDE TCOST.LIST
10x% END
11 INCLUDE VCONST»LIST
11x END
12* RETURN
DIAGNOSTIC CONTROL CAN NEVER REACH THE NEXT STATEMENT
13% 1000 RETURN 7
14 % END

END OF COMPILATION? 1 DIAGNOSTICS.,

- A 26 -

COSLIMeCOSLIM
0 COMFILED pY 1201 BCS7E ON 07 JAN 71 AT 14:12:06.

UTINE COSLIM ENTRY POINT 000016

GE USEL: COpE(1) 0000227 DATA(OQ) 000005; BLANK COMMON(2) 000000

ON BLOCKS?

) PARAM 000002

INAL REFERENCES (BLOCK» NAME)

b NERK4%
) NERR3$%

\GE ASSIGNMENT (BLOCK» TYPE: RELATIVE LOCATION, NAME)

) 000000 INJPS 0003 000000 JTIME 0003 I n00001 XIN

1% SUBROUTINE COSLIM(P,$)

% C

3% C COSLIM TESTS LIMIT ON COST P AT ANY STAGE IN CALCULATIONS.

4% C CONSTRAINTS COME FROM PROCEDURE COSTCN

S* C

6x INCLUDE COMLNK(LIST

€% COMMON/PARAM/ JUTIMEXIN(1)

6% INTEGER XIN

O* END

1% INCLUDE COSTCNeLIST -

T* END

8% RETURN
DIAGNOSTIC CONTROL CAN NEVER REACH THE NEXT STATEMENT

9% 1000 RETURN 2

10=* END

END OF COMPILATICNS 1 DIAGNOSTICS.

- A 27 -

CCST,COST
0 COMPILED BY 1201 RCS7E ON 07 JAN 71 AT 14:11:49.

ION COST ENTRY FOINT 000011

Gt USEu: CODE(1) V000133 DATA(O) 000007: BLANK COMMON(2) 000000
'ON BLOCKS:

) PARAM 0g0002

'NAL REFERENCES (BLOCKr» NAME)
¢ NERR3S

AGL ASSIGNMENT (BLOCKe TYPE» RELATIVE LOCATION» NANME)
J R 000000 CoST 0000 000002 INJPS 0003 n00000 JTIME 0000 R (00001 P

D1AGNOSTIC THE VARfABLEv P» 1S REFERENCED IN THIS PROGRAM,» BUT IS NCWHERE ASSIGNE
DIAGNOSTIC THE NAME ST APPEARS IN A DIMENSION OR TYPE STATEMENT BUT IS NEVER REFE

1% FUNCTION COST(CSsCP¢+NXeNC)
2% DIMENSION CS(1)rCP(1)

3% INTEGER CS¢CP,ST

Y% C

Y% C COST COMPUTES PRICE P OF CONTROLS CP APPLIED TO STATE CS.
6x C FUNCTION COMES FROM PROCEDURE COSTF
7« C

8% INCLUDE COMLNK(LIST

8% COMMON/PARAM/ JUTIME!XIN(1)
8x% INTEGER XIN

8% END

9% INCLUDE COSTF,LIST

9% END

10=* COST=P

11* RETURN

12x% END

END OF COMPILATIONS 2 DIAGNOSTICS,

- A 28 -
NEXTSTeNEXTST

0 COMPILED BY 1201 BCS7E ON 07 JAN 71 AT 14:10:37.

UTINE NEXTST ENTRY POINT 000006

WGk USEDS COpE(1) 000010:; DATA(O) 00000%: BLANK COMMON(2) 006000
‘ON BLOCKS:

) PARAM 000002

INAL REFERKENCES (BLOCKe NAME)

‘ NERR3S

\GE ASSIGANMENT (BLOCK» TYPEr» RELATIVE LOCATION, NAMF)

) 000000 INJPS 6003 000000 JTIME 0003 I 000001 XIN
1% SUBROUTINE NEXTST(CSsCPeSTINX,NC)
&% CIMENSION CS(1)eCP(1)»ST(1)
3% INTEGER CSeCP,.ST
4% C
5% C THIS SUBROUTINE USES A PROBLEM SPECIFIC FUNCTION LOCATED IN
6% C PROCEDURE NEWST TO COMPUTE THE NEW STATE FROM CS AND CP.
7% C
8% INCLUDE COMLNK(LIST
&% COMMON/PARAM/ JUTIME.XIN(1)
8% INTEGER XIN
8% END
S« INCLUDE NEWST,LIST
9x END
10x* RETURN
11lx END

END OF COMPILATION: NO DIAGNOSTICS.

N

Subject: A Dynamic Programming Computer Program

Case 105-4

Author: J. E. Nahra, M. P. 0Odle

DISTRIBUTION LIST

NASA Headquarters

P. F. Culbertson/MLA
V. Huff/MTE

A. S. Lyman/MA-2

J. W. Wild/MTE

Bellcomm, Inc.

G. M. Anderson

G. C. Bill

A. P. Boysen, Jr.

J. O. Cappellari, Jr.
K. R. Carpenter

D. A. DeGraaf

J. P. Downs

D. R. Hagner

W. G. Heffron

H. A. Helm

J. J. Hibbert

N. W, Hinners

D. P. Ling

H. S. London

K. E. Martersteck

H. H. McAdams

J. Z. Menard

J. M. Nervik

G. T. Orrok

P. F. Sennewald

R. V. Sperry

W. Strack

C. M. Thomas

W. B. Thompson

J. W. Timko

R. L. Wagner

M. P. Wilson

All Members, Center 101
All Members, Center 103
All Members, Center 201
All Members, Department 2032
Department 1024 File

Central Files
Library

